北航合肥人工智能?北航 人工智能

日期: 浏览:3

大家好,感谢邀请,今天来为大家分享一下北航合肥人工智能的问题,以及和北航 人工智能的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!

本文目录

  1. 北京航空航天大学附近有什么地铁站几号线
  2. 北京航空航天大学保研去向
  3. 北航2023年人工智能考研大纲
  4. 人工智能研究生大学排行

北京航空航天大学附近有什么地铁站几号线

知春路站,五道口站,西土城站,其中知春路是10号线和13号线换乘站,五道口站是13号线,西土城站是10号线。

北京航空航天大学(北航、BeihangUniversity),创建于1952年,坐落于北京市,是中华人民共和国工业和信息化部直属、中央直管副部级建制的全国重点大学,是“双一流”“211工程”“985工程”重点建设高校。该校入选“珠峰计划”“2011计划”“111计划”“卓越工程师教育培养计划”、国家建设高水平大学公派研究生项目、中国政府奖学金来华留学生接收院校、国家级新工科研究与实践项目、“国家级大学生创新创业训练计划”“国家大学生创新性实验计划”、全国深化创新创业教育改革示范高校、强基计划试点高校,是国际宇航联合会、中欧精英大学联盟、中国-西班牙大学联盟、中俄工科大学联盟、中国高校行星科学联盟、中国人工智能教育联席会成员。

北京航空航天大学保研去向

北京航空航天大学2021届保研率26.9%。

绝大部分保研生留在北航深造,少部分去国科大、清华、北大等校深造。

因公示名单无,无法比对保研本校数据。但还是本校居多。

保研北京大学的共有26人。

共整理保研清华大学52人。

保研中国科学院大学20人。

北航2023年人工智能考研大纲

1、842人工智能基础综合试题含信号与系统、算法设计与分析和机器学习三门课程的内容。所有课程均不指定参考书。

2、试题总分为150分,每门课试题满分50分,三门课程的试题均计入考试成绩。

《信号与系统》考试大纲(50分)

一、复习要点

(一)信号与系统绪论

(1)信号与系统的概念;

(2)信号的描述、分类及常用信号;

(3)信号的基本运算。

(二)正交函数集与正交分解

(1)信号分解的物理意义;

(2)正交函数集;

(3)信号在正交函数集上的分解。

(三)连续周期信号的傅里叶级数

(1)连续周期信号在三角函数集上展开;

(2)连续周期信号傅里叶级数;

(3)有限项傅里叶级数与均方误差。

(四)连续信号的傅里叶变换

(1)非周期连续信号的傅里叶变换;

(2)典型信号的傅里叶变换;

(3)傅里叶变换的基本性质;

(4)周期信号的傅里叶变换。

(五)拉氏变换

(1)拉氏变换的定义、物理意义;

(2)拉氏变换的基本性质;

(3)拉氏逆变换;

(4)双边拉氏变换。

(六)连续时间系统的时域分析

(1)系统的概念、表示与分类;

(2)LTI系统分析方法概述;

(3)连续系统的时域经典分析法;

(4)零输入响应与零状态响应;

(5)卷积的定义与性质;

(6)卷积法求解系统响应。

(七)连续时间系统的S域分析

(1)系统函数;

(2)由系统函数零、极点分布分析时域特性;

(3)线性系统的稳定性分析。

(八)离散时间系统的时域分析

(1)离散时间信号(序列)及其表示;

(2)典型离散时间信号;

(3)离散时间信号的基本运算;

(4)离散时间系统的基本概念描述与分类;

(5)系统冲激响应函数的求解。

(九)离散时间系统的Z域分析

(1)z变换及其收敛域;

(2)典型序列的z变换;

(3)逆z变换;

(4)z变换的基本性质;

(5)系统函数与z域分析。

(十)离散信号的傅里叶分析

(1)离散周期信号的傅里叶级数DFS;

(2)序列的傅里叶变换离散时间傅里叶变换DTFT;

(3)离散傅里叶变换DFT;

(4)快速傅里叶变换FFT。

(十一)傅里叶变换及其图像处理应用

(1)数字图像简介;

(2)二维离散傅里叶变换2DDFT及其性质;

(3)2DDFT在图像处理中的应用。

《算法设计与分析》考试大纲(50分)

一、整体要求

(一)掌握算法的定义、性质和表示方法,并能够使用伪代码对算法进行描述;

(二)能够熟练采用渐近上界、渐近下界与渐近紧确界分析算法的运行时间;

(三)掌握算法设计的常用方法,包括分而治之、动态规划、贪心、近似算法;掌握图的基本概念和重要的基础图算法;

(四)掌握计算复杂性的基本概念和证明P类、NP类问题的方法;

(五)具有对简单计算问题的建模、分析、算法设计、算法优化和编程求解能力。

二、复习要点

(一)渐近复杂性分析

(1)O、Ω、Θ符号定义;

(2)分析给定算法的渐近复杂性;

(3)比较具有不同渐近上界的算法的效率;

(4)递归函数的运行时间分析。

(二)常用算法设计方法的基本思想和特点,以及针对具体问题设计相应的算法并分析其效率

(1)分治算法

(2)动态规划算法

(3)贪心算法

(4)近似算法

(三)图算法

(1)图的基本概念和基本性质;

(2)图的表示方法;

(3)图的遍历与搜索方法;

(4)最小生成树和最短路径等图具体问题算法。

(四)计算复杂性

(1)计算复杂性的基本概念,如判定问题、优化问题等;

(2)P类和NP类问题的定义和证明。

《机器学习》考试大纲(50分)

一、复习要点

(一)机器学习基础算法:(1)Bayesian学习以及相关算法;(2)Q学习基本概念;(3)归纳学习-决策树构建算法。

掌握机器学习发展历史、AlphaGO技术的发展历史以及核心技术,掌握Q学习的基本方法;掌握VC维的定义,以及统计学习理论的基本结论,深入理解经验风险和真实风险概念区别与联系;理解Bayesian的基本原理,贝叶斯学习、朴素贝叶斯算法在相关实际问题中应用;掌握HMM算法的基本原理;掌握信息熵概念的内涵、ID3算法构建过程、根据具体的实例,构建决策树。掌握信息增益的概念,以及在构建决策树时的物理含义。

(二)神经网络与深度学习:(1)线性分类器-感知机等;(2)传统神经网络-BP算法等;(3)深度学习-卷积神经网络等。

掌握线性分类器的构建方法,包括线性分类器的基本形式、构建方法;掌握感知机的构建方法、Fisher准则、最小均方误差准则。掌握机器学习里优化概念如何应用于线性分类器的设计。理解神经网络的反传算法基本原理、能够根据具体简单的网络实例写出反传公式的基本形式。了解经典深度神经网络模型、以及前沿技术,主要掌握卷积神经网络;理解卷积神经网络的构建过程、包括卷积操作的定义、Pooling操作的定义等。

(三)统计学习分类器:(1)支持向量机;(2)Adaboost算法;(3)子空间学习与稀疏表示。

理解统计学习理论的基本原理、支持向量机的基本原理与线性分类器的联系。掌握支持向量机的优化目标构造方法、优化算法以及应用。掌握Adaboost的基本原理,弱分类器的基本概念以及分类器融合算法。掌握子空间学习与稀疏表示的基本概念与思想,掌握主成分分析方法的具体过程、优化目标以及应用。基本了解Fisher判别分析、核判别分析等等;了解稀疏表示方法与子空间学习的联系与区别。

人工智能研究生大学排行

人工智能大学排名第一个是清华大学,工科类优势大,然后是中国科学技术大学,北京科技大学,北京航空航天大学,南京航空航天大学,上海复旦大学,北京大学,西北工业大学,西安交通大学,上海交通大学,中南大学,浙江大学,南京大学,武汉大学,哈尔滨工业大学等等。

好了,文章到这里就结束啦,如果本次分享的北航合肥人工智能和北航 人工智能问题对您有所帮助,还望关注下本站哦!

推荐阅读
美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件
北航合肥人工智能?北航 人工智能文档下载: PDF DOC TXT