个人工智能是什么?个人工智能是什么意思

日期: 浏览:3

大家好,今天给各位分享个人工智能是什么的一些知识,其中也会对个人工智能是什么意思进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!

本文目录

  1. 人工智能的利与弊分别是什么,该如何看待?
  2. 人工智能是谁在1956年提出来的
  3. 人工智能的定义和主要研究方法是什么?
  4. 什么是人工智能技术运用到我们生活哪些场景呢

人工智能的利与弊分别是什么,该如何看待?

人工智能给我们生活带来的好处:人工智能在数据集上有着一定的优势。人工智能有三大商业方向:大数的统计、对用户情绪评估、与用户之间的社交纽带。人工智能通过这三大商业方向,以更好地了解人类。同时也可以创作出更好的软件,以此来给更多的人带来快乐。在未来可以增加客户体验,给客户带来快乐的企业,将会赚取更多的商业价值。当扫地机器人、削面机器人、做饭机器人、工业机器人、消防机器人、战斗机器人等开始运用于我们的生活中时,不得不说给我们的生活带来了极大便利。人工智能在能源发展过程中会间接地提高能源的利用率。这个功能在日常生活中的表现是:有些智能硬件,可以根据你以往的习惯,判断你什么时候到家,这样在你进入房子之前它就可以把室内气温调节到相宜的温度,这样就是一种节约能源的方式。如果这种智能设备能够被成千上万的家庭使用的话,那能源利用率就会极大地提高,能源就会得到极大的节省。其次,人工智能和人类智慧越来越明显的分工会极大地节省人力资源成本,这必然会成为人工智能在未来工业领域的一大趋势:有些效率低的工作由智能机器人做更好。比如有些重复性的工作,这些工作由智能机器人来做不但节约了人力成本而且提高了工作的效率。如果把人工智能应用在工业中,去调节一些不可控的因素,而不需要消耗大量的人力。比如风车发电,有了人工智能,就不需要浪费大量人力在不确定的风向上,人工智能设备会根据不同的风向对风车做出相应的并且是及时的调整。人工智能在医疗上也起到很大的帮助。很多医生都不能确定的病情,人工智能可以通过它的大数据进行分析和理疗。再好比当下的人工智能无人汽车。在技术保障的前提下,这不仅大大降低了事故发生率,还节省了驾驶人员大量的驾驶时间。

人工智能给我们生活带来的风险:大规模的失业,人工智能的发展,导致很多人失业,机器人不会犯错,不会累,不需要休息,不需要工资,这完全可以代替很多职业;人工智能时代的到来可能是对人类的一次大淘汰。机器人对人类的大淘汰;才争夺战导致垄断、贫富分化加剧,人工智能时代的到来,必将引发空前的人才争夺战。谁拥有的各类一流人才数量多质量高,谁就能赢得最后胜利。随着社会科技的快速发展,人工智能进入了高速发展的轨道。人工智能给我们生活带来了很多便利。人工智能带给我的利大于弊,机遇与风险并存,如何利用好大数据更为重要!

人工智能是谁在1956年提出来的

是麦卡锡。

人工智能是在1956年达特茅斯会议上麦卡锡首先提出的。该会议确定了人工智能的目标是“实现能够像人类一样利用知识去解决问题的机器”。它的初衷是希望能让机器像人类一样,代替人类完成一些任务。

正是有了这一需求,才催生了机器学习(1970s)的出现。人工智能进入了发展的第一个高潮。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MITAILAB实验室。

人工智能的定义和主要研究方法是什么?

直入主题,咱们该先给人工智能来个全面的定义,对吧?

但悲催的是这种清晰唯一的定义在人工智能研究圈里是不存在的!(不存在至少是因为理解和定义智能本身就是个正在进行时。)

人工智能的三种定义

我们确实有很多种方式来定义什么是人工智能。第一种,也是最常见的一种,从人工智能研究广受欢迎的成果的角度:大体上来讲,人工智能或者是“创造和研究具备智能行为的机器”(注意:“具备”是怎么解释都行),或者是“创造和研究可以思考的机器”(注意:什么样的“思考”都行)

第二种定义是从人工智能的组成部分或者其想解决的问题的角度,您最常听到的是这样的:

【计算机视觉:如何识别目标?】【语音识别和合成:如何将声音转化为文字或将文字转换为声音】【自然语言处理NLP:如何从语言中提炼有意义的特征?以及如何在生成式语句中赋予有意义的特征?】【知识图谱:如何用一种更实用的方法(例如,分层级的,语义网络)给信息排序】【推理机:如何通过整合碎片信息形成结论?】【规划:如何计划一系列行动,以确保这些行动被执行的同时,能达成特定的目标?】

所以这儿我们忍不住用一个更有文化的-或者说更高大上的-方式去定义人工智能。AstroTeller(现任X,Alphabe’smoonshotfactory的首席执行官)在1998年提出:“人工智能是研究如何使机器做他们在电影中干的事情的科学”

这个定义差不多就是通用人工智能(强AI或者全AI)和超级人工智能的概念,这些所谓智能的例子在科幻小说里非常多。小说里总会说这个通用系统将会达到或者超过人类的能力-也就是说,人工智能将会整合我们刚才列出的全部功能。

现在人工智能评论员们中最流行的活动之一是试图猜测天网(电影终结者里的人工智能防御系统)何时被取代。如果你注意到针对通用人工智能和超级人工智能的各种预测存在着巨大差别,也会由衷地觉得很难定论这些预测是高估还是低估人工智能,而且这种水平的机器智能是否可以做到。

AI的主要研究方法

从上个世纪50年代开始,人工智能一般采用两种方法进行研究:

第一种方法是首先制定规则,然后通过阶梯树解决问题。人工智能的先驱们,很多是逻辑学家,他们很喜欢这种方法。这种方法在上个世纪八十年代随着专家系统的诞生达到顶峰,例如,系统把从有机化学专家那儿获得的知识库和决策引擎封装在程序中,就能帮助化学家们识别不知名的分子。

问题是这样的系统在开发一个新模型的时候,你必须从头开始-那些手写的,具体的规则本身就非常困难,或者最后就不可能归纳起来运用在不同问题之间,例如语音识别的规则很难用在医学诊断上。

第二种方法是建立一个通用模型,这种方法只需要通过提供数据调整模型参数即可,是近期最受欢迎的方法。

有些模型与统计学方法相当接近,但最有名的那些模型是受神经科学启发而建立的,即人工神经网络。这种人工神经网络都有一个共有的通用方法:

【1它们由神经元构成】【2它们被组织在不同的层里,信息通过输入层,“隐藏层”(由于在中间),然后到达输出层】【3神经元和层之间存在数量巨大的连接(这些连接可能是向前的、向后的,甚至同一层内相邻的神经元之间也会存在连接)】【4这些连接代表了权重,表示某一个连接两端神经元的相对重要性,负权重代表一个神经元对另一个神经元存在抑制作用,正权重代表一个神经元对另一个神经元存在刺激作用。】

目前火爆的深度学习,估计大家现在都有所耳闻。深度学习就是一种由大量的层组成的上述类型的人工神经网络–因此很“深”,它在图像目标识别中取得了相当好的成果。

另外,机器学习模型分为三类,都是可能会遇到的:

有监督学习:给模型输入标识过的数据–例如一个典型的猫的图片,这张图片带着一个“猫”的标签。

无监督学习,给模型输入未标识的数据,靠它自己进行模式识别。因为数据经常不会被标识–想想所有堆积在你智能手机里的照片-并且标识过程很花时间,所以无监督学习方法虽然更难并且不够完善,但是看起来比有监督学习更有前景。

增强学习:每次模型迭代后,你都会给它一个评级。举一个DeepMind的例子,它训练了一个玩古老的雅达利游戏的模型,模型里的等级是游戏显示的分数,模型渐渐地学会了如何获得最多的分数。增强学习方法可能是三种方式中最不完善的,但是最近DeepMind算法的成功已经清楚地表明在增强学习上的努力获得了丰硕回报。

人工智能不是一棵树。而是一片灌木丛!

所以,当把人工智能解决的问题结合在一起时,会发现它是随着各种学派而变化的,这些学派还有自己的分支,有不同的目标和受到不同来源的启发……这样大概就能理解为什么想把这个领域的研究做个完美分类总是有问题的。请看下图–看出来问题了吗?

把“机器学习”和“语音”放在同一个层次是不准确的,因为你能用机器学习模型解决语音问题–他们不是并行的分支,但是,其他更加不同的分类更让人纠结。

因此,人工智能领域的难与美之处就在于它肯定不是一棵有序的树,而是一片灌木丛。一个分支的成长比另一个快,就会进入大家的视野,然后又轮到另一个分支发生类似的情况等等。有些分支会产生交叉,另一些不会,一些分支被淘汰,又有新的出现。

因此最核心的一条建议是:永远别忘了大方向和重点,否则你就会迷失!

什么是人工智能技术运用到我们生活哪些场景呢

人工智能就是AI,目前最贴近我们生活的就是手机上的拍照功能,AI美颜,AI修图,AI超级夜景等,通过机器学习数据,对用户拍的照片做优化,使照片成像更讨人眼球,质量更高。手机领域AI功能最强的应该还是华为,华为最新的soc麒麟990整合了多个npu,它的AI能力远超前代和友商高通的产品。

OK,本文到此结束,希望对大家有所帮助。

推荐阅读
美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件
个人工智能是什么?个人工智能是什么意思文档下载: PDF DOC TXT