老铁们,大家好,相信还有很多朋友对于罗辑思维 人工智能和罗辑思维人工智能的相关问题不太懂,没关系,今天就由我来为大家分享分享罗辑思维 人工智能以及罗辑思维人工智能的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!
本文目录
人工智能的思维逻辑
人工智能逻辑是指用逻辑方法和逻辑成果研究智能主体如何处理知识的理论。人工智能逻辑的研究对象与人工智能研究的对象不同,人工智能逻辑不研究智能主体如何从外部获得知识。
人工智能逻辑的产生来源于人们在计算机中实现知识处理的探索。为此必须建立实现知识处理的形式理论。至少在基础研究或者在理论重建的层面上,利用现代逻辑的种种方法和成果来建立上述形式理论成为必要。处理知识又称知识处理,内容主要包括知识表示、知识反思、知识修正、知识推理。知识推理除了传统意义上的演绎推理、归纳推理和类比推理,还包括常识推理。常识推理是人类日常生活中获取新知识的最重要手段之一,具有非单调性和信息不完备性。人工智能逻辑即重点在研究常识推理的形式化及刻画。
人工智能是不是逻辑理论
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。
逻辑学有两种意思,第一,狭义逻辑学,即研究如何推理的学问;第二,广义逻辑学,即研究人类思维规律的学问。由于推理是人类思维过程的一部分,因此,狭义逻辑学实际上是广义逻辑学的一部分。
当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。
人工智能逻辑推理方式
常见的12种推理类型
1.演绎推理
[演绎推理]是从一般到具体,换句话说,它是从一个理论开始,并努力寻找确认的观察结果,被称为自上而下的逻辑。常用来寻求现象来证明理论。它使用形式逻辑并在逻辑上产生结果。
演绎推理通常与归纳推理形成对比,可以说,演绎推理对确定性感兴趣,而归纳推理处理存在的可能性。
逻辑学中有名的三段论(syllogism)就是典型的演绎推理例子:人皆有一死,苏格拉底是人,所以,苏格拉底会死。
2.归纳推理
[归纳推理]是一种基于一系列已知事实形成理论的逻辑形式,是自上而下的逻辑,寻求理论来解释观察。它的本质是探索,允许意料之外但在情理之中的结果。
归纳推理的典型例子:因为地球上大多数生命都依赖于液态水生存,所以水对外星生命形式(如果存在的话)必须是重要的。
3.类比推理
[类比推理]是使用类比对两事物之间进行比较,来进一步理解事物的意义。通常用于制定决策、解决问题和沟通。
作为制定决策和解决问题的工具,类比用于将复杂场景简化更为容易的事物,只要替换有效,可以提高解决方案的质量;作为一种交流工具,类比可通过熟悉且易于理解的比较,将复杂问题简单化。
4.分析推理
[分析推理]是使用独立的逻辑,基于事实的思想或论据。换句话说,解释分析推理不需要有关于世界的经验或信息。
分析陈述本身就是事实;而合成陈述需要有关世界的其它知识才能知道它们是真实的。
例如:“所有单身汉未婚”之类的陈述本身就是分析;“中国??拥有丰富的传统文化”这样的陈述是合成的,因为没有额外的信息就无法证明这一点。
5.诱导推理
[诱导推理]类似归纳推理,从寻找或猜测理论来解释观察到的一系列现象。诱导推理并不是很严谨,但可以做出最好的假设和猜测。它通常用于背景不确定的情况下,主要用来做辅助决策和故障排除等相关情况。例如:医学评估可以从解释一组症状的最可能的病症开始。诱导推理也是人工智能常用的方法。
6.向后归纳
[向后归纳]是从潜在结论开始向后推理的过程,可以反向绘制可以达到每个潜在结论的步骤,然后根据目标评估路径。这是一种自上而下的方法,从理论或结果开始,向后解释,它允许不确定性并且通常用于人工智能。向后归纳往往需要做很多工作,因为通常有很多路径可以到达既定结果,就像“条条大路通罗马”。对计算机来说,通过机器的结束状态,来向后推理来评估动作的效果。例如:计算机下棋的经典方式是通过反向归纳。
7.批判性思维
[批判性思维]是一个理性思考的过程,旨在以客观、全面、知情的方式得出结论。批判性思维是人类思想的产物,受文化、语言等因素的影响。人类思想基于自然语言,做出判断前需要考虑大量的想法。批判性思维是一种智力参与的过程,在发表意见之前,要仔细查证据和假设,以达到深入的理解。
8.反事实思维
[反事实思维]是一种常见的思维模式,已知结果来追溯未评估的选择和行动,典型代表是“如果我有…”,“如果我当时怎么...做,就会怎么...”。。考虑的是已知不可能的发生的事情,考虑过去的决策是如何制定的,这是一个可以提高决策能力的共同的人类思维过程。换句话说,反事实思维是评估过去的可能性对于改善未来决策或解决问题的价值。
9.直觉
[直觉]是心灵在没有推理等逻辑过程的情况下获取知识的能力,换句话说,大脑获得直觉判断的方法对于思想者来说是未知的。通常认为直觉是通过无意识感知的结果。是由无意识感知的心灵所做出的判断,这种判断表现出智慧,但产生这些判断的过程并不是很清楚。尽管直觉有时候被轻视,但他在科学发现中却发挥了重要作用。
10.动机推理
[动机推理]是欲望和恐惧影响理性思维过程的倾向。通常人们可能会寻求合理的理由来做他们想做的事情,而不是使用逻辑来发现最佳的情况。
我们通常很容易想出一些逻辑参数来支持自己做出这样或那样的选择,就不会再去探索其他可替代的选择,因此放弃了潜在的更好的选择。
11.机会推理
[机会推理]是一种人工智能,它可以根据情况使用不同的逻辑方法,即[正向链接]和[反向链接]。
[正向链接],举个例子:
A:会计师通常擅长数学。
B:张三是一名会计师。
演绎:张三可能擅长数学。
上面的例子是模糊逻辑的一个例子,因为它能够理解灰色区域,其中存在“通常”、“可能”,它属于前向链接,因为它从你已知的信息转移到新的信息。
[反向链接]:反向链接看未来状态,并试图看到未来是如何发生的,这对于实现目标或避免损失非常有用。例如:人工智能可以使用反向链接检查国际象棋游戏中给定时刻的最终状态,来确定可能获胜的移动序列。
机会推理根据情况使用正向链接和反向链接。人工智能可以具有多个逻辑引擎,这些逻辑引擎基于它们在给定情况下过去的表现而被选择。理论上,单个人工智能可以拥有大量逻辑引擎,它根据特定类型的问题的已知结果进行选择。
12.循环推理
[循环推理]是逻辑,一个自己证明自己的结论。结论可以作为假设或前提采用。循环推理通常会产生逻辑上有效的参数,并且是没有实际意义的逻辑示例。例如:如果我是DJ,那么我就是DJ。
人工智能教育试点校开设什么课程
人工智能上升为国家战略后,各地都很重视。对于小学生的罗辑思维、综合能力提升也有很大帮助。期待各所试点学校在人工智能课程方面的好消息。
据了解,武汉市人工智能教学纳入智慧教育工作重点工作,与“星级智慧校园”建设等统筹推进,各区教育局要坚持试点先行、典型引路,加强统筹规划,分类分批推进本区域人工智能教学工作,在试点基础上逐步实现中小学人工智能课程全覆盖。
罗辑思维 人工智能的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于罗辑思维人工智能、罗辑思维 人工智能的信息别忘了在本站进行查找哦。
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件