强人工智能(强人工智能举例)

日期: 浏览:3

大家好,关于强人工智能很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于强人工智能举例的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

本文目录

  1. 弱人工智能和强人工智能的特点
  2. 强人工智能和弱人工智能该如何定义
  3. 强人工智能与弱人工智能的区别
  4. 人工智能的三个强度

弱人工智能和强人工智能的特点

弱人工智能,是指不具备独立意志,只能在设计的程序范围内决策并采取行动的人工智能。弱人工智能属于专用型人工智能,也即只能在某一领域行动,只能专注于一件事情。对超出其预设的程序范围的事情,弱人工智能是束手无策的。

强人工智能,是指具有独立意志,能在设计的程序范围外自主决策并采取行动的人工智能。这是强人工智能和弱人工智能最大的不同。强人工智能属于通用型人工智能,它的活动已经不再局限于某一领域。强人工智能在各方面都和人类相似,可以胜任人类所有工作。人类所能做的体力和脑力劳动,强人工智能也能完成得同样好。

强人工智能和弱人工智能该如何定义

要回答这个问题,首先要了解弱人工智能和强人工智能的区别:

强人工智能

强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem_solving)的智能机器,并且,这样的机器能将被认为是有知觉的,有自我意识的。强人工智能可以有两类:类人的人工智能,即机器的思考和推理就像人的思维一样;非类人的人工智能,即机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。

弱人工智能

弱人工智能观点认为不可能制造出能真正地推理(Reasoning)和解决问题(Problem_solving)的智能机器,这些机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。

从上面的人工智能界公认的观点可以看出,至少要能从给定的任意类型的输入信息中,主动寻找出相关的模式规律,然后能运用找到的模式规律来检查后续的输入信息是否符合其预期,并将预测正确的规律作为解决问题的方法,这才能称得上是强人工智能。

可以不客气的说,目前所有的人工智能产品及场景应用都只是弱人工智能,连强人工智能的门框都没有摸到。

真实世界里的各种信息可以通过抽象,将其中的绝大部分信息转换为可计算的算术逻辑。哥德尔不完备定理是数学史上最让人震撼的成果之一,它的出现告诉我们算术逻辑计算的极限:

1、数学不一定是完备的:

即只有一阶谓词演算的算术逻辑是完备的,而那些包含了自指迭代(比如第N+1项为第N项的某种变形),或者是包含无穷个项(比如从第1项到第N项的累加)的算术逻辑运算命题,其中肯定含有无法证明其为真的命题。

2、数学不一定是一致的:

即存在一些特殊的算术逻辑命题,其中包含又对又不对的数学陈述,比如“我说的这句话是谎话”。

3、数学不一定是可判定的:

即我们无法通过机械化的计算,就能判定某个数学陈述是对是错。图灵和哥德尔分别用不同的方法证明了这一点。而图灵机模型的问世,正是这一数学问题的物理实现的答案。

现在我们所使用的计算机,其算术逻辑计算的理论模型正来自于图灵机。所以,在使用现在的计算机(不包含量子计算机)来计算我们抽象出来的模拟现实世界中的数学问题时,必定会碰到无法求解的情况。

我们认为人类的智能是通用型智能,即人类智能能够推理并解决各种不同类型的问题。但是,我们人类并不能解决所有的问题,还有相当多的问题,即使是最聪明,最有智慧的人到现在都没能力找出正确答案,比如明天会不会下雨?明天的股市是涨还是跌?人类的大脑是怎么产生出意识的?宇宙的终极真理是什么?我们之所以想开发出强人工智能,很大程度上是让其帮我们找到那些我们没能力解决的问题的正确答案。换句话说,我们梦想中的强人工智能,其智能水平应该远远超越我们人类自身。当然,强人工智能的实现并不是一个固定的终点,比如智商20000,它应该是能不断升级,不断迭代进化的。某些问题在当前的资源条件下无法求解出答案,不代表升级进化后还是无法求解。

那么该如何实现强人工智能呢?我个人认为,我们无法绕过我们人类自身已经拥有的通用型智能。只有先理解了人类自身的通用型智能的机制原理,我们才有可能造出第一代的强人工智能,正如我们从原始社会到农业社会到工业社会再到信息化社会,强人工智能的实现也是这样一个逐步前进的过程,终点是什么,我们离宇宙的终极真理有多近,现在谁都没法给出正确答案。

下面有朋友提出一个观点:

认为我们人类自己可以在没有深刻了解一个东西的原理前,“制造”出这个东西。

如果仅仅使用现有的某个东西,我们不需要了解其机制原理,但如果要制造并批量复制出和这个东西功能相同的人造物,我们还是得了解其机制原理。

当然,我们不需要彻底弄懂其全部机理或最底层的奥秘,但至少要在某个层面上理解其机理。比如原始人一开始通过自然产生的野火来烤熟生肉,但直到TA们学会人工取火,才能算是真正的使用火。哪怕随后数万年里人类对火产生的原理的认识是错误的,也不妨碍我们发明出更多制造和使用火的方法。人类对事物的认知和推理,是建立在不断试错的基础上的,在这个过程中我们将自己的智能抽象化通用化,延展开来,解决了一个又一个不同类型的问题。这正是我们人类智能的发展轨迹,而目前的图灵机可以做到这一点吗?答案不言自喻。而为什么我们人类智能能这样发展,或许正是因为意识参与其中。现在,有部分人工智能科学家已经认识到了意识在智能活动中的重要性,所以已经开始了这方面的研究和尝试。具体案例请参阅以下报道:

我们需要有意识的机器人

意识必须有某种重要功能,否则在进化过程中,我们不会获得这一能力。

同样的功能也适用于人工智能。

最后,哥德尔不完备定理只能说明这一点:

在以图灵机为理论模型的计算机上,是无法开发实现出强人工智能的,甚至连我们人类水平的通用型智能也无法实现。因为我们人类还有意识,可以将无法计算出结果的问题搁置起来,或通过不太靠谱的直觉给出一个模糊的答案,而图灵机是做不到这一点的。

我们梦想开发出强人工智能,来帮我们人类探寻世界的本质和终极的真理。这方面从早期毕达哥拉斯提出的“万物皆数”,到现代科学家StephenWolfram提出的“宇宙的本质是计算”,后来又被《人类简史》的作者将其简化为“万物皆算法”。

然鹅,早在上个世纪末,彭罗斯在其《皇帝新脑》一书里,通过数学,哲学,物理学三个角度,通过抽象逻辑分析和数学公式推导,以及经典物理及现代量子物理的各种前沿理论及猜想向读者证明,我们所存在的这个世界一定存在,而且确实已经存在着某些具有非算法特征的东西,即这些东西是无法用数学公式压缩,也无法通过纯数学的物理公式计算出后续时间里这些东西的必然状态。

或许彭罗斯的观点和论证并不绝对正确,但至少他给出的证明和逻辑推理并不是全无参考价值的。他在书的最后一章里对我们人类意识的功能作用进行了推测:

我们的大脑在进行数字逻辑推理计算时,这种行为是一种无意识行为,是可以按照算法过程进展的,但还需要再在这个过程之上对这个算法过程进行一个判断,这种判断正是意识行为的呈现,而意识行为是不能被任何算法所描述的进展。(P552~553)让我们回忆第四章用来建立哥德尔定理以及它与可计算性之间的关系的论证。这论证指出,不管数学家用什么(足够广泛的)算法去建立数学真理,或是类似真理的东西,不管他采用什么形式系统去提供真理的判据,总有一些数学命题,譬如该系统显明的哥德尔命题Pk(k)(参考146页),这些算法不能提出答案。如果该数学家的头脑作用完全是算法的,那么实际用以形成他判断的算法(或形式系统)不能用以应付从他个人算法建立起来的Pk(k)命题。尽管如此,我们(在原则上)能看到Pk(k)实际上是真的!既然他应该也能看得到这一点,这看来为他提供了一个矛盾。这个也许表明,该数学家根本不用任何算法。(P559)

让我们再从头审视一下目前公认的强人工智能的定义,可以发现,意识是一个绕不开的坎儿,但在现有的图灵机理论模型里,我们能找到意识的位置吗?

强人工智能与弱人工智能的区别

根据强人工智能的观点,生产能够真正推理和解决问题的智能机器是可能的。解决这些问题的机器可以被认为是有意识的和自我意识的。强人工智能有两种类型:类人人工智能,即机器思维和推理与人类思维一样;非类人人工智能,即机器产生与人类完全不同的感知和意识,并使用与人类完全不同的推理方法。

根据弱人工智能的观点,制造能够真正推理和解决问题的智能机器是不可能的。这些机器看起来只像智能,但它们并没有真正的智能,也没有自主意识。主流研究集中在弱人工智能上,人们普遍认为这一研究领域已经取得了相当大的成就。强人工智能的研究处于停滞状态。

人工智能的三个强度

1、弱人工智能

可以代替人力处理某一领域的工作。目前全球的人工智能水平大部分处于这一阶段。就像超越人类围棋水平的阿尔法狗,虽然已经超越了人类在围棋界的最高水平,不过在其他领域还是差的很远,所以只是弱人工智能。

2、强人工智能

拥有和人类一样的智能水平,可以代替一般人完成生活中的大部分工作。这也是所有人工智能企业目前想要实现的目标。走到这一步之后,机器人大量替代人类工作,进入生活就成为的现实。

3、超人工智能

人工智能的发展速度是很快的。当人工智能发展到强人工智能阶段的时候,人工智能就会像人类一样可以通过各种采集器、网络进行学习。每天它自身会进行多次升级迭代。而那个时候,人工智能的智能水平会完全超越人类。

关于强人工智能的内容到此结束,希望对大家有所帮助。

推荐阅读
美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件
强人工智能(强人工智能举例)文档下载: PDF DOC TXT