大数据与人工智能服务?大数据与人工智能

日期: 浏览:3

其实大数据与人工智能服务的问题并不复杂,但是又很多的朋友都不太了解大数据与人工智能,因此呢,今天小编就来为大家分享大数据与人工智能服务的一些知识,希望可以帮助到大家,下面我们一起来看看这个问题的分析吧!

本文目录

  1. 物联网、大数据、云计算和人工智能之间的关系是怎样的?
  2. 大数据,人工智能,机器人三者之间到底有什么关系
  3. SaaS、AI和大数据,三者“作用与反作用”的关系是怎样的?
  4. 人工智能与大数据专业怎么样?

物联网、大数据、云计算和人工智能之间的关系是怎样的?

人工智能、大数据、物联网以及云计算,彼此之间存在着千丝万缕的“亲缘”关系!半个多世纪的某个夏天,麦卡锡、明斯基等众科学家们举办了一次Party,共同研究用机器模拟智能的问题,也是在那时,“人工智能(AI)”的理念正式被提出!人工智能(ArtificialIntelligence)简称AI,AI能根据大量的历史资料和实时观察(real-timeobservation)找出对于未来预测性的洞察(predictiveinsights)。如今人工智能商业化正在快速推进中,比如我们所知道和了解的人像识别、图像识别技术、语音识别、自然语言理解、用户画像等。此类技术也现阶段已经在金融、物联网等行业得到应用!对于未来而言,人工智能会在人类生活的方方面面,发挥越来越多的作用,也会刷更多的存在感,慢慢的更会懂我们很多!不远的将来会有越来越多的自动化的系统出现,比如刷脸支付已经在来的路上了!先以人工智能为例,抛弃其他任何,也便不会有今天大红大紫的人工智能!

不得不说的人工智能背后的基石:大数据

大数据是人工智能的基石,目前的深度学习主要是建立在大数据的基础上,即对大数据进行训练,并从中归纳出可以被计算机运用在类似数据上的知识或规律。简单而言何为大数据?虽然很多人将其定义为“大数据就是大规模的数据”。但是,这个说法并不准确!“大规模”只是指数据的量而言。数据量大,并不代表着数据一定有可以被深度学习算法利用的价值。例如:地球绕太阳运转的过程中,每一秒钟记录一次地球相对太阳的运动速度、位置,可以得到大量数据。可如果只有这样的数据,其实并没有太多可以挖掘的价值!大数据这里我们参阅马丁·希尔伯特的总结,今天我们常说的大数据其实是在2000年后,因为信息交换、信息存储、信息处理三个方面能力的大幅增长而产生的数据:信息交换:据估算,从1986年到2007年这20年间,地球上每天可以通过既有信息通道交换的信息数量增长了约217倍,这些信息的数字化程度,则从1986年的约20%增长到2007年的约99.9%。在数字化信息爆炸式增长的过程里,每个参与信息交换的节点都可以在短时间内接收并存储大量数据。信息存储:全球信息存储能力大约每3年翻一番。从1986年到2007年这20年间,全球信息存储能力增加了约120倍,所存储信息的数字化程度也从1986年的约1%增长到2007年的约94%。1986年时,即便用上我们所有的信息载体、存储手段,我们也不过能存储全世界所交换信息的大约1%,而2007年这个数字已经增长到大约16%。信息存储能力的增加为我们利用大数据提供了近乎无限的想象空间。信息处理:有了海量的信息获取能力和信息存储能力,我们也必须有对这些信息进行整理、加工和分析的能力。谷歌、Facebook等公司在数据量逐渐增大的同时,也相应建立了灵活、强大的分布式数据处理集群。大数据在应用层面:大数据往往可以取代传统意义上的抽样调查、大数据都可以实时获取、大数据往往混合了来自多个数据源的多维度信息、大数据的价值在于数据分析以及分析基础上的数据挖掘和智能决策。美国《大西洋月刊》公布的一段A.I.聊天记录截图延伸阅读:聊天机器人竟自创语言“对话”脸书将其紧急关停实际上人工智能的发展,离不开海量数据进行训练,究其根本大数据的循环往复无数次的训练和深度学习才有了人工+智能!

没有人工智能的物联网:没大戏

而物流网又让人工智能:更准确

物联网:英文名为InternetofThings,可以简单地理解为物物相连的互联网,正是得益于大数据和云计算的支持,互联网才正在向物联网扩展,并进一步升级至体验更佳、解放生产力的人工智能时代。在未来,虚拟世界的一切将真正实现物理化!物联网主要通过各种设备(比如RFID,传感器,二维码等)的接口将现实世界的物体连接到互联网上,或者使它们互相连接,以实现信息的传递和处理。对于人工智能而言,物联网(IoT)其实肩负了一个至关重要的任务:资料收集概念上,物联网可连接大量不同的设备及装置,包括:家用电器和穿戴式设备。嵌入在各个产品中的传感器(sensor)便会不断地将新数据上传至云端。这些新的数据以后可以被人工智能处理和分析,以生成所需要的信息并继续积累知识。互联网在现实的物理世界之外新建了一个虚拟世界,物联网将会把两个世界融为一体。物联网的终极效果是万物互联,不仅仅是人机和信息的交互,还有更深入的生物功能识别读取等等!

人工智能背后强大的助推器:云计算

云计算(详情参阅之前回答:什么是云计算?)是将我们传统的IT工作转为以网络为依托的云平台运行,NIST(美国国家标准与技术研究院)在2011年下半年公布了云计算定义的最终稿,给出了云计算模式所具备的5个基本特征(按需自助服务、广泛的网络访问、资源共享、快速的可伸缩性和可度量的服务)、3种服务模式(SaaS(软件即服务)、PaaS(平台即服务)和IaaS(基础设施即服务))和4种部署方式(私有云、社区云、公有云和混合云)云计算发展较早,经过10年发展,国内已经拥有超百亿规模,云计算也不再只是充当存储与计算的工具而已!未来可以预见的是,云计算将在助力人工智能发展层面意义深远!而反之,人工智能的迅猛发展、巨大数据的积累,也将会为云计算带来的未知和可能性!

人工智能也好、大数据也好、物联网及云计算也好,彼此依附相互助力,藕不断丝且相连!组合拳出击才更有力量:给未来多一些可能,给未知多一些可能性,给不可能多一些可能!

大数据,人工智能,机器人三者之间到底有什么关系

人工智能涵盖的学科很广,但主要还是机器学习,要想要机器有思维有想法,主要有两种方法第一种靠大数据来建立逻辑回归等模型,第二种就是给计算机输入模式,让计算机能自动识别某种模式,甚至自动创新出某种模式,就像人一样,但是这种方法很难。

把机器学习算法烧到机器人大脑的芯片里面,机器人就真正具备了“思维”

目前的很多机器学习算法模型的训练还是以大数据为主,希望我们能开发出自主的,先进的算法从而做到真正的机器人会“思考”

SaaS、AI和大数据,三者“作用与反作用”的关系是怎样的?

要想了解SaaS、AI和大数据之间的关系,首先要清楚三者的概念以及其各自的运行特点。

SaaS是云计算的三个服务之一,也是云计算能为用户提供的最便捷的服务之一,用户无需搭建硬件服务器、无需开发人员、无需维护团队,直接使用就可以了,目前很多软件服务商已经把自己的软件产品云端化,未来软件产品云端化是一个较为明显的趋势。

大数据是以数据为中心而产生的一系列概念(技术),也可以简单的理解为以数据价值化为目的的一系列操作。大数据是物联网和云计算发展到一定阶段的必然产物,大数据也推动了整个互联网技术的发展。

AI代表人工智能,相比于SaaS和大数据来说,要解释AI就比较麻烦了,可以简单的描述为具备自主学习及决策能力的智能体。AI的研究内容比较多,也比较复杂,集中在自然语言处理、知识表示、自动推理、机器学习、计算机视觉以及机器人学六大方面。

下面分析一下三者之间的作用与反作用,SaaS的运用是产生大数据的一个重要基础,用户通过SaaS服务而产生大量的数据,反过来大数据的发展也促进了SaaS的发展,因为数据价值化让用户感受到了SaaS更大的价值,从而更加重视SaaS的运用。通过SaaS,用户会更加方便的使用软件服务,通过和大数据的结合,SaaS功能也会越来越强大。

大数据是AI的基础,目前人工智能的研究多以大数据为基础,得益于大数据的发展,目前AI也得到了快速的发展,像自然语言处理、机器学习等领域的不少产品已经投入了使用。可以说大数据促进了AI的发展,反过来AI的发展也使得大数据得到更多的重视。

SaaS服务产生了大量的数据,而通过AI技术会让SaaS服务更加智能。可以说云计算是大数据的支撑,而大数据也支撑了人工智能。

我的主要研究方向是大数据和人工智能,目前也在带相关方向的研究生,我会陆续在头条写一些关于大数据方面的文章,感兴趣的朋友可以关注我的头条号,相信一定会有所收获。

如果有大数据、人工智能方面的问题,也可以咨询我。

谢谢!

人工智能与大数据专业怎么样?

接楼上刘老师的回答,这确实是个不错的问题。随着近几年人工智能技术和大数据技术的发展,大数据和人工智能在各行各业的落地应用变多,人才需求也变得越来越大,这两个词也逐渐被大众熟知。作为大数据与人工智能领域的一名从业者,下面我分享下我对这两个专业的一些看法。

人工智能专业和大数据专业分别是什么?

1、人工智能专业:

人工智能专业:以培养掌握人工智能理论与工程技术的专门人才为目标,学习机器学习的理论和方法、深度学习框架、工具与实践平台、自然语言处理技术、语音处理与识别技术、视觉智能处理技术、国际人工智能专业领域最前沿的理论方法,培养人工智能专业技能和素养,构建解决科研和实际工程问题的专业思维、专业方法和专业嗅觉

这里引用百度百科中的解释,个人感觉说的还是比较全面的。其中几个关键词为机器学习,深度学习、自然语言处理、语音处理、视觉智能,这几个关键词大概覆盖了目前人工智能方向的核心理论和核心应用。其实本阶段的人工智能的核心就是基于机器学习和深度学习的理论,研究自然语言(小冰机器人)、语音(讯飞翻译)、视觉(无人价值、人脸识别)三大大类方向的智能应用。

2、大数据专业

大数据专业在某些学校开设的可能叫数据科学与大数据技术专业,其培养目标为:

旨在培养社会急需的具备大数据处理及分析能力的高级复合型人才。具体包括:掌握计算机科学、大数据科学与信息技术的基本理论、方法和技能,受到系统的科学研究训练,具备一定的大数据科学研究能力与数据工程实施的基本能力,掌握大数据工程项目的规划、应用、管理及决策方法,具有大数据工程项目设计、研发和实施能力的复合型、应用型卓越人才。

目前的大数据专业大概可能氛围三个大的方向:

大数据开发方向;所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;数据挖掘、数据分析和机器学习方向;所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;大数据运维和云计算方向;对应岗位:大数据运维工程师;

大数据开发可能涉及到如各种云平台(阿里云、腾讯云、华为云)、大数据系统(大数据中台)等的开发;数据挖掘、分析和机器学习方向,主要对大数据进行分析,如广告推荐、视频推荐等等;大数据运维主要是保障大数据平台的稳定和可靠。

这两个专业的前景是怎样的?

两个专业作为近年来的热门专业,肯定是有一定理由的。国家推广、商业应用前景大可能是这两个专业比较火爆的原因之一。

1、“新基建”浪潮,大数据中心、人工智能

最近国家提出“新基建”的七大领域:特高压、新能源汽车充电桩、5G基站建设、大数据中心、人工智能、工业互联网、城际高速铁路和城际轨道交通。其中人工智能和大数据中心都名列其中,可见国家对这两个方向的重视程度。

另外像人工智能技术,早就被国家定义为全民都应该掌握的技术,也是未来有可能超过美国的一个点。

所以从国家层面,这两个专业都是国家未来要着重发展的方向。

2、高实用性、各行业信息化、智能化转变的需要

数据是数字经济的命脉

随着移动互联网和智能终端的普及,基于信息技术的人类日常生产生活繁衍出诸多数据。这些数据成为社会生产者和消费者的行为分析最有效的依据。从信息经济向数字经济转变的过程,就是从人工知识到大数据驱动学习迈进的过程。

数据爆炸时代,将数据科学简单定义就是“从数据中提取有用知识的一系列技能和技术”。为“浩如烟海”的数据提供全强大的计算方式,进行数据管理、系统开发、海量数据分析与挖掘、实现数据价值的“精纯度”,正是大数据专业所要培养的技术核心所在。

我感觉在未来,大数据技术可能是每个行业必备的。而数据也将成为未来企业的巨大的竞争力,谁掌握了数据,谁就更具备优势。

两个专业的关系和关于专业选择的一些建议

大数据智能是人工智能最基础的方向之一,必将推动新一代人工智能的发展。数据科学和大数据,通过建立驱动数据和知识引导的智能计算平台和方法,从数据样本中提取知识构建模型。形成从数据到知识,从知识到智慧的人工智能的进阶之路。因此数据是实现智能的基础,两个专业有所交叉,又各有特色。

一些建议:

从目前各高校开设这两个专业的情况来看,这两个专业还是属于计算机专业的分支,即使成立的单独的学院,师资力量也不一定雄厚。所以,如果国内牛校的计算机专业也不影响具体内容的学习,而计算机专业可能师资和培养计划会更加完善。目前计算机相关的各专业其实都在往这两个专业方向靠近,比如数据库、计算机软件、操作系统等等,都会有大数据-人工智能在本方向的一个更细分的应用作为结合,所以不是说只有读这两个专业才会进这两个专业对应的岗位,夯实基础、学好技能才是最重要的。

回答终于回归到专业领域,哈哈!如果有其他问题也可以关注我或者想我提问!

请动动您发财的双手点赞关注!您的点赞和关注是我最大的动力!

关于大数据与人工智能服务的内容到此结束,希望对大家有所帮助。

推荐阅读
美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件
大数据与人工智能服务?大数据与人工智能文档下载: PDF DOC TXT