大家好,关于人工智能数学基础很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于人工智能数学基础PDF的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!
本文目录
ai数学知识
人工智能需要具备的数学基础有很多,如:
1、线性代数:本质是将具体的事物抽象为数学对象,并描述其静态或动态特性,在人工智能领域,计算机处理生活中的事物采用的就是将具体抽象化的方法。
2、概率论:概率论是对生活中无所不在的可行性的分析研究,在人工智能领域,概率论通过对生活中的可行性进行建模分析处理,进而做出判断或操作。
3、形式逻辑:理想的人工智能应该具有抽象意义的学习、推理和归纳的能力,这就需要一个认知的过程,如果我们将认知的过程定义为对符号的逻辑运算,那么形式逻辑就是人工智能的基础。
4、数理统计:数理统计着重研究的对象是未知分布的随机变量,是逆向的概率论,对于人工智能来说,能够对未知分布的随机变量进行研究分析,才是最重要的。
学习人工智能,需要什么数学基础
需要必备的知识有:
1、线性代数:如何将研究对象形式化?
2、概率论:如何描述统计规律?
3、数理统计:如何以小见大?
4、最优化理论:如何找到最优解?
5、信息论:如何定量度量不确定性?
6、形式逻辑:如何实现抽象推理?
7、线性代数:如何将研究对象形式化?人工智能简介:1、人工智能(ArtificialIntelligence),英文缩写为AI。人工智能涉及的学科:哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论,仿生学,社会结构学与科学发展观。
人工智能需要的数学知识和物理知识
需要。人工智能需要的数学知识和物理知识包括:线性代数、微积分、概率论、最优化理论、信息论和形式逻辑等。
其中,线性代数是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。
从量子力学到图像处理都离不开向量和矩阵的使用。
而在向量和矩阵背后,线性代数的核心意义在于提供了一种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。
对人工智能很感兴趣,打算学习,请问需要什么数学基础
数学困扰大家主要有这几个方面:
1、机器学习需要的数学知识是不是很难,网上的公式都看不懂?
2、很多人都说工作后就是调参,调包,不太需要用到数学吧?
3、零基础究竟该怎么自学数学,学到哪个程度?
观点:
1、数学是必须的。
数学对于机器学习来说是必备基础,数学是内功,你要理解一个算法的内在逻辑,没有数学是不行的。以后跑算法的时候,你可能就是调参、调包,不会用到数学。但是你发现效果不好的时候,如果你数学不懂,就很难作优化,数学是你在机器学习路上的天花板。
2、数学也不是很难。
但是,数学真的很难吗?说实话,对于一般人来说,是有点门槛的,但没有你想的那么难。这里假设你上过大学的数学课,你就具备了机器学习的数学入门门槛了,之后的数学啃一啃是可以下来的。如果说你没有上过大学的数学,emmm,挺难的,这说明你除了跟别人付出同样的努力之外,还要多付出一些大学数学的学习。
3、相比于数学,实际项目能力更重要。
这句话没错,可是大部分人在没接触到实际项目的时候,就已经被挡在门外了。很多从事机器学习的你问他数学,他可能也不是很懂,可是你能咋办。人家面试你的时候就要问你这些,问你对算法的理解,你不会那你就过不了面试啊。
4、学习是枯燥的,但是有办法缓解。
在学习算法的时候,我们会看到很多推导,学着学着就怕了,就失去兴趣了,这里有个方法可以有效缓解。我之前的系列中有本书叫做机器学习实战,跟着上面的代码敲一敲,很容易出成果,你会看到在现实中的实际应用,很有成就感。
5、数学的学习是可以“取巧”的
这里说的取巧指的是,数学的学习是有迹可循的,因为入门阶段的数学实际上就需要那些,列出来,你自己啃一下就可以了。具体的学习方法不是等你把数学都学好了再去学算法知识。而是你在学习算法的时候,看到你数学缺哪块再去补哪块,这是最高效的。当然了,在这之前你可以通读一遍数学的基础,对学习有个大概是更好的。
数学必备知识点
1、线性代数
标量、向量、矩阵和张量;矩阵向量的运算;单位矩阵和逆矩阵;行列式;方差,标准差,协方差矩阵;范数;特殊类型的矩阵和向量;特征分解以及其意义;奇异值分解及其意义
Moore-Penrose伪逆;迹运算
2、概率统计
概率学派和贝叶斯学派;何为随机变量和何又为概率分布;条件概率,联合概率和全概率公式;边缘概率;独立性和条件独立性;期望、方差、协方差和相关系数;常用概率分布;贝叶斯及其应用;中心极限定理;极大似然估计;概率论中的独立同分布
3、优化
计算复杂性与NP问题;上溢和下溢;导数,偏导数及两个特殊矩阵;方向导数和梯度;梯度下降法;牛顿法;仿射集,凸集和凸锥;超平面,半空间及凸集分离定理;不改变凸性的运算;凸函数及凸优化简述;无约束的优化,等式约束优化,不等式约束优化;线性规划中对偶理论;拉格朗日对偶理论
4、信息论及其他
信息熵;条件熵;相对熵(KL散度);互信息;几种常用的距离度量;图论;树论
上面数学基本上就是我们所要学的数学的全部了,看上去有点吓人是不?不要慌,没有那么难,一点点啃下去就可以了。
推荐资料:
资料一:机器学习王牌课程CS229课后配套数学,专门配套机器学习的。
资料二:YoshuaBengio的《深度学习》书,网上公开的,前面有一部分是对数学的专门讲解,很基础很全面。
数学基础篇
如果你上面三个材料看起来很吃力,或者说你的数学没有达到大学的水平。那就是数学基本功的问题了。针对这种情况,我觉得只能把相关的大学数学书拿出来翻一翻,基本概念要弄懂,什么是矩阵、导数等等,偷不了懒。
1、数学分析与概率论
同济大学数学教研室,高等数学,高等教育出版社,1996
王松桂、程维虎、高旅端,概率论与数理统计,科学出版社,2000
2、矩阵和线性代数
同济大学数学系编,工程数学线性代数(第五版),高等教育出版社2007
以上三本数学书,如果你对基础概念忘了的话,可以选择性看下相应的篇章。
好了,文章到这里就结束啦,如果本次分享的人工智能数学基础和人工智能数学基础PDF问题对您有所帮助,还望关注下本站哦!
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件