人工智能用来分析数据,人工智能使用数据

日期: 浏览:3

其实人工智能用来分析数据的问题并不复杂,但是又很多的朋友都不太了解人工智能使用数据,因此呢,今天小编就来为大家分享人工智能用来分析数据的一些知识,希望可以帮助到大家,下面我们一起来看看这个问题的分析吧!

本文目录

  1. 机器学习、数据科学、人工智能、深度学习和统计学之间的区别是什么?
  2. 数据分析是什么怎么做数据分析
  3. ai数据用什么方法分析
  4. 大数据AI智能能分析彩票么?

机器学习、数据科学、人工智能、深度学习和统计学之间的区别是什么?

明晰了数据科学家所具有的不同角色,以及数据科学与机器学习、深度学习、人工智能、统计学等领域的区别。这些概念的区别也一直是人工智能领域热烈讨论的一个话题,Quora、多个技术博客都曾有过解答。也有不少文章对此问题进行了探讨,但似乎业内还未能给出一个权威的、令所有人信服的回答。

数据科学家与分析师VincentGranville明晰了数据科学家所具有的不同角色,以及数据科学与机器学习、深度学习、人工智能、统计学、物联网、运筹学和应用数学等相关领域的比较和重叠。Granville介绍说,由于数据科学是一个范围很广的学科,所以他首先介绍了在业务环境中可能会遇到的数据科学家的类型:你甚至可能会发现你自己原来也是某种数据科学家。和其它任何科学学科一样,数据科学也可能会从其它相关学科借用技术;当然,我们也已经开发出了自己的技术库,尤其是让我们可以以自动化的方式(甚至完全无需人类干预)处理非常大规模的非结构化数据集的技术和算法,进而实时执行交易或进行预测。

1.数据科学家具有哪些不同类型?

要更详细地了解数据科学家的类型,可参阅文章:http://suo.im/28rlX1和http://suo.im/3NNUpd。更多有用的信息可参阅:

数据科学家与数据架构师:http://suo.im/4bRkRG

数据科学家与数据工程师:http://suo.im/3mpo6E

数据科学家与统计学家:http://suo.im/2GGtfG

数据科学家与业务分析师:http://suo.im/3h0hkX

而在最近,数据科学家AjitJaokar则又讨论了A型数据科学家(分析师)和B型数据科学家(建造者)之间的区别:

A型数据科学家能够很好地编写操作数据的代码,但并不一定是一个专家。A型数据科学家可能是一个实验设计、预测、建模、统计推理或统计学方面的事情的专家。然而总体而言,一个数据科学家的工作产品并不是「P值和置信区间」——就像学术界的统计学有时候建议的那样(而且这常常是为传统的制药等等行业工作的)。在谷歌,A型数据科学家被称为统计学家、定量分析师、决策支持工程开发分析师,也有一些被称为数据科学家。

B型数据科学家:这里的B是指Building。B型数据科学家和A型数据科学家具有相同的背景,但他们还是很强的程序员、甚至经验丰富的软件工程师。B型数据科学家主要关注在生产环境中使用数据。他们构建能与用户进行交互的模型,通常是提供推荐(产品、可能认识的人、广告、电影、搜索结果等)。

而对于业务处理优化,我也有自己的看法,我将其分成了ABCD四个方向,其中A表示分析科学(analyticsscience),B表示业务科学(businessscience),C表示计算机科学(computerscience),D则表示数据科学(datascience)。数据科学可能会涉及到编程或数学实践,但也可能不会涉及到。你可以参考http://suo.im/11bR7o这篇文章了解高端和低端的数据科学的差异。在一家创业公司,数据科学家通常要做很多类型的工作,其扮演的工作角色可能包括:执行、数据挖掘师、数据工程师或架构师、研究员、统计学家、建模师(做预测建模等等)和开发人员。

虽然数据科学家常常被看作是经验丰富的R、Python、SQL、Hadoop程序员,而且精通统计学,但这不只不过是冰山一角而已——人们对于数据科学家的这些看法不过是来自于重在教授数据科学的部分元素的数据培训项目而已。但正如一位实验室技术人员也可以称自己为物理学家一样,真正的物理学家远不止于此,而且他们的专业领域也是非常多样化的:天文学、数学物理、核物理、力学、电气工程、信号处理(这也是数据科学的一个领域)等等许多。数据科学也是一样,包含的领域有:生物信息学、信息技术、模拟和量化控制、计算金融、流行病学、工业工程、甚至数论。

对我而言,在过去的十年里,我专注于机器到机器和设备到设备的通信、开发能自动处理大型数据集的系统、执行自动化交易(比如购买网络流量或自动生成内容)。这意味着需要开发能够处理非结构化数据的算法,这也是人工智能、物联网和数据科学的交叉领域,也可被称为深度数据科学(deepdatascience)。其对数学的需求相对较少,也只涉及到较少的编程(大部分是调用API),但其却是相当数据密集型的(包括构建数据系统),并且基于专门为此背景而设计的全新统计技术。

在此之前,我的工作是实时的信用卡欺诈检测。在我事业的早期阶段(大约1990年),我开发过图像远程感知技术,其中包括识别卫星图像的模式(形状和特征,比如湖泊)和执行图像分割:那段时间我的研究工作被称为是计算统计学,但在我的母校,隔壁的计算机科学系也在做着几乎完全一样的事情,但他们把自己的工作叫做是人工智能。

今天,这项工作被称作数据科学或人工智能,其子领域包括信号处理、用于物联网的计算机视觉等。

另外,数据科学家也可以在各种各样的数据科学项目中出现,比如数据收集阶段或数据探索阶段一直到统计建模和已有系统维护。

2.机器学习对比深度学习

在深入探讨数据学习与机器学习之间的区别前,我们先简单讨论下机器学习与深度学习的区别。机器学习一系列在数据集上进行训练的算法,来做出预测或采取形同从而对系统进行优化。例如,基于历史数据,监督分类算法就被用来分类潜在的客户或贷款意向。根据给定任务的不同(例如,监督式聚类),用到的技术也不同:朴素贝叶斯、支持向量机、神经网络、ensembles、关联规则、决策树、逻辑回归或多种方法之间的结合。

这些都是数据科学的分支。当这些算法被用于自动化的时候,就像在自动飞行或无人驾驶汽车中,它被称为人工智能,更具体的细说,就是深度学习。如果数据收集自传感器,通过互联网进行传输,那就是机器学习或数据科学或深度学习应用到了IoT上。

有些人对深度学习有不同的定义。他们认为深度学习是带有更多层的神经网络(神经网络是一种机器学习技术)。深度学习与机器学习的区别这一问题在Quora上也被问到过,下面对此有详细的解释:

人工智能是计算机科学的一个子领域,创造于20世纪60年代,它涉及到解决对人类而言简单却对计算机很难的任务。详细来说,所谓的强人工智能系统应该是能做人类所能做的任何事。这是相当通用的,包含所有的任务,比如规划、到处移动、识别物体与声音、说话、翻译、完成社会或商业事务、创造性的工作(绘画、作诗)等。

自然语言处理只是人工智能与语言有关的一部分。

机器学习被认为是人工智能的一方面:给定一些可用离散术语(例如,在一些行为中,那个行为是正确的)描述的人工智能问题,并给出关于这个世界的大量信息,在没有程序员进行编程的情况下弄清楚「正确」的行为。典型的是,需要一些外部流程判断行为是否正确。在数学术语中,也就是函数:馈入输入,产生正确的输出。所以整个问题就是以自动化的方式建立该数学函数的模型。在二者进行区分时:如果我写出的程序聪明到表现出人类行为,它就是人工智能。但如果它的参数不是自动从数据进行学习,它就不是机器学习。

深度学习是如今非常流行的一种机器学习。它涉及到一种特殊类型的数学模型,可认为它是特定类型的简单模块的结合(函数结合),这些模块可被调整从而更好的预测最终输出。

3.机器学习与统计学之间的区别

《MachineLearningVs.Statistics》这篇文章试图解答这个问题。这篇文章的作者认为统计学是带有置信区间(confidenceintervals)的机器学习,是为了预测或估计数量。但我不同意,我曾建立过不需要任何数学或统计知识的工程友好的置信区间。

4.数据科学对比机器学习

机器学习和统计学都是数据科学的一部分。机器学习中的学习一词表示算法依赖于一些数据(被用作训练集),来调整模型或算法的参数。这包含了许多的技术,比如回归、朴素贝叶斯或监督聚类。但不是所有的技术都适合机器学习。例如有一种统计和数据科学技术就不适合——无监督聚类,该技术是在没有任何先验知识或训练集的情况下检测cluster和cluster结构,从而帮助分类算法。这种情况需要人来标记cluster。一些技术是混合的,比如半监督分类。一些模式检测或密度评估技术适合机器学习。

数据科学要比机器学习广泛。数据科学中的数据可能并非来自机器或机器处理(调查数据可能就是手动收集,临床试验涉及到专业类型的小数据),就像我刚才所说的,它可能与「学习」没有任何关系。但主要的区别在于数据科学覆盖整个数据处理,并非只是算法的或统计类分支。细说之,数据科学也包括:

数据集成(dataintegration)

分布式架构(distributedarchitecture)

自动机器学习(automatingmachinelearning)

数据可视化(datavisualization)

dashboards和BI

数据工程(dataengineering)

产品模式中的部署(deploymentinproductionmode)

自动的、数据驱动的决策(automated,data-drivendecisions)

当然,在许多公司内数据科学家只专注这些流程中的一个。

对于这篇文章,技术顾问SureshBabu给出了一个评论:

这篇文章说明了解使用机器/计算机来处理类似人类决策的任务的统计学习的基本术语是件很麻烦的事。

但文章中「当这些算法被用于自动化的时候,就像在自动飞行或无人驾驶汽车中,它被称为人工智能,更具体的细说,就是深度学习。」这样的说话看起来却有些随意任性。

当过去计算机/机器还不够友好,没有得到广泛使用的时候,统计学家和数据科学家的工作和现在这个领域的工作有很大的不同。比如说,当制造业开始使用计算机辅助后,生产速度和量都发生了巨大的变化——但它仍然是制造业。用制造机器来做原本人类做的程序化工作的想法最早来自19世纪初Jacquard和Bouchon等人。而Jacquard织布机的工作方式和现在计算机控制的织布机的工作方式基本相同。

现在的数据科学是一个知识体系,囊括了统计学和计算方法等等(而且在不同的具体领域不同学科的比例也不一样)。

机器学习(或使用了其它的术语,比如深度学习、认知计算)是让机器像人类一样思考和推理,基本上而言是指通过人工的方法(所以也叫人工智能)来代替人类天生的自然智能——涉及到的任务从简单到复杂都有。比如,无人驾驶汽车(目前)正在模仿人类的驾驶,驾驶条件也是人类在自然情况下会遇到的——我说「目前」是因为也许未来人类将很少能够直接驾驶机器,「驾驶(drive)」这个词本身都可能会改变含义。

这个领域里面也有些滑稽可笑的事情,比如一些基本的东西(比如一个下国际象棋或围棋的算法)被认为可以解释人脑的工作方式。就我们目前的知识水平而言,光是解释鸟或鱼的大脑的工作方式就已经非常困难了——这说明我们还没有真正理解学习的机制。为什么果蝇只需几百个神经元就能做到这么多事情?这还是神经科学的一个未解之谜。而认知是什么以及其在自然环境下是如何工作的也是一个数据科学傲慢地认为自己能解决的重大难题。(不管怎样,降维是一种无监督学习的方法。)

在很多方面,工具以及我们使用工具所做的事情自人类诞生以来就在引导着人类的学习。但这就扯远了。

更多内容请参阅:http://www.jiqizhixin.com/article/2359

数据分析是什么怎么做数据分析

数据分析还是不错的职业发展方向的

1)简单点评:

数据分析师以待遇优厚和地位尊崇而闻名国际,被视为我国21世纪的黄金职业。目前,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺。领英报告表明,数据分析人才的供给指数最低,仅为0.05,处于极度紧缺状态,是最热门职业之一。

数据分析师是全科型破题人才,具备数据认知能力、数据处理能力、数据化思维能力、数据呈现能力、数据决策能力、计算机及数据分析信息技术、企业实战能力,通过大数据思维从宏观规划、微观/细分市场分析、方案执行和策略部署等诸多方面为企业带来价值。而AI、BI仅是全过程中的某一部分技能。

2)数据分析师亮点:

1.人才缺口非常大

大数据/AI时代,只要公司有业务决策需求,都离不开数据分析。

猎聘2019年大数据人才就业趋势报告显示:中国大数据人才缺口高达150万,其中绝大部分是数据分析岗。数据化强国战略促使数据分析职位需求量井喷,据IDC与数联寻英等机构统计2018年比2014年增加4倍,未来三至五年人才缺口将达150万。而目前的中国大数据人才仅有30万左右!至2025年中国大数据人才缺口达到200万。

2.简单易学发展好

相比大数据工程师、AI工程师而言,数据分析学习难度要低,从数据分析入行未来向大数据、AI发展也比较容易。

3.就业不愁薪资高

51job等主流招聘网站数据分析岗位是Java三到五倍左右,就业不愁。以大数据思维为企业提供数据化解决方案的人才紧缺。2018年行业起薪突破20万/年,高出行业平均薪酬水平30%以上!因为稀缺,所以高薪,初入职场零经验的应届毕业生拿到10K的薪资几乎已成常态,而20k-30k的薪资占比已超过50%。

4.行业适应普遍强

据分析是绝大部分岗位都需要的职场必备技能。所有行业都需要数据分析技能,金融、电商类数据分析人员是需求最大的行业。

5.职业寿命非常长

数据分析师是不会失业、越老越香的少数职业之一。

马云曾表示:“未来三十年数据将取代石油,成为最强大的能源。”目前近50%的岗位需要具备数据分析能力,像互联网公司的产品经理、新媒体运营、活动策划、用户研究等岗位也给出“具备数据分析能力”这样的招聘条件。掌握数据分析能力=多50%岗位机会!

6.高校专业适应广

计算机、信息、数学、统计、电商、经济学、财务、统计、投资、金融和企业管理等专业的在校学生以及应届毕业生都可以从事数据分析职业。

2)行业定位与应用:

1.政府、事业机构:

负责项目审核、审批和招商引资、项目评估决策等工作的政府机构领导者及相关从业者。

2.金融机构:金融机构、管理咨询公司中风险投资、金融产品研发、信贷等相关项目管理的工作人员。

3.企业单位:招商引资、扩大再生产、财务审计、市场分析、数据挖掘等相关岗位的工作人员

4.事务所:数据分析师事务所、会计师事务所、资产评估事务所、税务师事务所及律师事务所人员

5.高校、职业技术学院:计算机、数学统计、经济学、财务、统计、投资、金融和管理等专业的学生。

6.其他:创业以及希望在投资金融、资本运营、房地产和企业管理行业发展的有志之士。

3)数据分析师工作内容

1.通过数据分析支持产品改进及新模式的探索;

2.构建数据评估体系,构建业务数据分析体系,帮助确定各项业务数据指标;

3.负责用户行为数据分析,通过监控及分析,推动产品改进,运营调整;

4.负责构建用户数据模型,挖掘用户属性及用户喜好等需求,为个性化产品推荐提供支持;

5.构建产品/运营/活动用户行为评估体系,通过数据分析对产品/运营/市场提出建议;

6.通过海量数据的挖掘和分析,形成报告,汇报给决策层,支持战略规划。

4)数据分析职业发展方向

6)薪酬分析:

ai数据用什么方法分析

Ai处理主要是通过数据挖掘和数据分析的。

数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习,利用数据挖掘进行数据处理常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行挖掘.

大数据AI智能能分析彩票么?

彩票这种组合本身就是高等数学里的“排列组合”中的一种,可与通过概率论来计算出每种组合的中奖概率,因此是可以通过大数据来计算出中奖概率的。

但是由于彩票的总组合数非常之高,如双色球32+1,总的组合数量高达17721088种,可以用排列组合的算法进行计算:

红球组合32个,组合数为:

(33*32*31*30*29*28)/(6*5*4*3*2*1)=1107568;

篮球16个,总的组合为:

1107568*16=17721088。

因此买一注双色球的中奖概率为:

1/177211088,

这个数字可以忽略不计,超过万分之一的概率,概率学上基本上可以忽略不计的。由此可见,我们人都可以分析出彩票的中奖概率,那就更不要说AI机器了。

再假设一下,每天开一期双色球,你每天都买同一个号码,根据概率论,你在177211088天中总的中奖概率接近100%,但你永远不知道哪一天会中奖。概率学中没有会达到100%的事情,它只是反应事物向某个方向发展的可能性。

所以说,企图用买彩票发财的朋友们,还是省省吧,只有通过辛勤的劳动才能换来回报。

关于人工智能用来分析数据的内容到此结束,希望对大家有所帮助。

推荐阅读
美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件
人工智能用来分析数据,人工智能使用数据文档下载: PDF DOC TXT