大家好,关于发展人工智能的基础要素很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于发展人工智能的基础要素包括的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!
本文目录
AI是什么,人工智能的简称吗?
因为我自己是学软件的,所以可能对AI比较熟悉一点,AI是人工智能的简称,许多人喜欢把AI理解为机器人,其实这样是不准确的。我们可以把人工智能拆开来解释为“人工”和“智能”,简单来讲就是由我们人类创造出来的智能。换句话说,只要是人类创造出来的,能提高人类的生产生活的效率,降低重复性操作,或者能够代替人类工作的都可以称作AI(人工智能)
如何才能从事人工智能相关工作呀?
这是一个非常好的问题,作为一名科技从业者,我来回答一下这个问题。
首先,当前人工智能领域的相关工作岗位还是比较多的,但是由于当前人工智能行业尚处在发展的初期,所以更多的岗位都集中在研发领域,所以当前要想在人工智能领域从事相关的工作岗位,往往对于自身的知识结构有较高的要求。从近些年来人工智能行业的人才招聘情况来看,往往会集中在研究生人才的招聘上,在具体岗位上都比较倾向于研发级岗位,比如人工智能平台开发岗位等。
对于普通人来说,要想从事人工智能相关工作,除了读研之外,也可以根据自身的知识机构和所处的行业,来制定学习计划。随着企业纷纷上云之后,未来人工智能产品的应用场景会越来越多,相应的人才需求也会逐渐释放出来。所以从这个角度来看,普通人要想进入人工智能领域发展,未来的发展前景还是比较广阔的。
当前人工智能领域的工作岗位除了研发岗位之外,还涉及到大量的方案设计岗位和运维等岗位,这些岗位的人才需求潜力也非常大,而且这些岗位在行业发展的初期,也会有较高的岗位附加值。以计算机视觉方向为例,当前人工智能产品要想落地应用,需要有专业的实施人员来完成方案设计,以便于让技术和场景相契合,同时还需要大量的技术人员来完成智能体的部署。从发展趋势来看,部署人员的从业规模会比较大,而且未来较长一段时间内,这些领域的人才缺口都会相对比较大。
目前对于具有一定计算机基础知识的人,可以把学习的重点放在人工智能平台的使用上,随着人工智能平台在行业领域的落地应用,未来基于人工智能平台来与行业领域相结合从而完成创新,是一个重要的发展趋势。相对于研发级岗位来说,基于人工智能平台进行的行业创新开发会有相对较低的技术门槛,只要经过一个系统的学习过程,大部分人都能够顺利掌握。当然,这个过程也需要完成大量的实践。
目前大型科技(互联网)公司推出的人工智能平台,往往都会基于计算机视觉技术体系,或者是自然语言处理技术体系来打造,而这两个大的技术体系也有比较多的应用场景。随着物联网建设的不断完善,未来人工智能平台与物联网平台也会深度整合,从而为人工智能技术的落地应用带来更多的可能。从大的发展方向来看,未来移动互联网、物联网和人工智能技术将逐渐深入整合,这个过程也很有可能会打开一个巨大的价值空间。
对于当前的大学生和初级职场人来说,要想进入人工智能领域发展,可以先从编程语言开始学起,比如Python就是不错的选择,然后进一步学习人工智能平台知识。在掌握了一些基本的人工智能知识之后,建议初学者找一个实习岗位,然后在实习岗位上提升会更好一些,包括场景的支撑和交流环境的支撑等等。
人工智能技术的学习往往需要有数据中心的支撑,这也是普通学习者在学习人工智能技术所面临的困难之一,同时有专业人士的指导,对于学习人工智能技术也有非常重要的影响。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
大数据和人工智能有什么关联?
第一层——两化融合
内容:
自动化——制造设备具备一定自动化能力,可实时产生生产制造的过程数据。
信息化——信息化主要指企业具备信息化能力,至少已经实施如ERP、MES、APS、WMS、SCM等传统软件,
物联网——具备RIFD、环境传感器等感知元件,可产生设备物联、物料物联、环境信息等。
作用:数据源
关键词:多源异构数据
第二层——信息通路
内容:
内部通路——打通企业内部网络数据通路,有条件可建立数据仓库或大数据中心。
外部通路——与互网联信息关联,通过爬虫或第三方数据服务获取商业舆情、用户画像等信息。
安全性——即在安全的基础上实现信息互通,尤其是内外部互通时,信息安全直接影响生产经营,甚至影响企业的竞争力。
作用:数据通道
关键词:消除信息孤岛
第三层——大数据
内容:
分布式集群——最著名的当属Hadoop生态圈,地球人都知道。
多源异构数据处理——多源是指企业需具备广泛数据来源,多源同时意味着较大数据量,传统IT架构处理千万级数据已经很困难了,要么牺牲时间要么牺牲硬件,而在大数据的分布式集群架构下,亿级数据秒处理只是入门门槛;异构是指要处理结构化数据、半结构化数据、非结构化数据,在传统的关系型数据库架构下,非结构化数据的处理采用对象存储,很难做到全文检索,而大数据架构下非结构化数据直接处理的模式多变灵活,且可与结构化数据进行关联分析。
数据运营——数据运营的概念在传统软件产品的世界中几乎是不存在的,以往软件提供特定功能,用户使用其功能。而在大数据的世界里,如果把数据比作钻石矿,大数据平台提供数据采集能力,数据就被开采;平台提供处理能力,数据矿就被提炼;平台提供配套运营体系,数据矿就变成了光彩夺目价值连城的首饰。数据运营能力决定了数据的价值,同时是不同的数据也是不同的矿藏,挖掘开采方式也不同,地貌也不同,因此配套解决方案也不应一套方法放之四海而皆准。
作用:数据探索
关键词:4个V(高速、高价值、大数据量、多样性)
第四层——人工智能
内容:
机器学习——分为有监督学习和无监督学习两种,当下最火的自然就是借AlphaGo扬名立万的深度学习领域了。
算法模型——构建数学算法模型,为企业应用场景提供支撑。可以是古老的贝叶斯,也可以是神经网络、灰度预测、随机森林等,原则就是算法为应用场景服务。
智能决策
作用:自学习能力参与决策、生产经营
关键词:自学习——只有具备自学习能力,才称得上人工智能,才具备了模拟人脑的能力,才能做我们的制造能力具备了大脑,才能称得上智能制造。
自学人工智能需要学哪些专业知识?
这是一个非常好的问题,作为一名科技工作者,同时也是一名计算机专业的教育工作者,我来回答一下。
首先,自学人工智能知识对于学习者的要求还是比较高的,一方面人工智能技术的知识量比较大,另一方面学习难度也相对比较大。对于初学者来说,可以根据自己的发展规划来制定学习路线,如果未来要从事行业领域内的人工智能技术开发,可以分别学习编程语言和人工智能平台知识,然后通过实践来提升开发能力。
从目前人工智能人才的培养方式来看,当前研究生教育依然是培养人工智能技术人才的主要渠道,但是随着人工智能平台的陆续开放,人工智能应用开发的技术门槛也有了较大幅度的下降,普通开发人员经过一个系统的学习过程(主要学习人工智能平台),也能够完成各种人工智能应用软件的开发。
对于自学者来说,以人工智能平台为基础来学习人工智能知识是比较现实的选择,一方面学习难度相对比较低,另一方面对于实验环境的要求也相对比较简单。在具体的学习过程中,需要学习以下两方面内容:
第一:编程语言。编程语言可以从Python语言开始学起,目前Python语言在人工智能开发领域也有比较广泛的应用。在学习Python语言的过程中,还可以同时学习一下计算机基础知识,包括操作系统、数据库和计算机网络等。在条件允许的情况下,可以进一步学习一下机器学习知识,这会在一定程度上提升对于人工智能技术的认知能力。
第二:人工智能平台。人工智能平台的学习首先要选择一个开放的人工智能平台,目前选择计算机视觉平台和自然语言处理平台都可以,相关的案例也比较多。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
好了,文章到此结束,希望可以帮助到大家。
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件