各位老铁们,大家好,今天由我来为大家分享外行怎么切入人工智能领域,以及外行怎么切入人工智能领域的的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!
本文目录
外行怎样领导内行?
外行管理内行,虽然具有一定的难度和局限性,但只要方法得当,管理适度,也是完全能够做好的。
一、制定管理规则。作为一个管理者,你奖励什么,惩罚什么,提倡什么,反对什么,无疑就是向员工昭示你的价值标准。你的员工如果认同你的价值标准,就会努力地去做你要他做的事,成为你所希望的那种员工。如果不接受你的价值标准,要么消极应付,要么调离或者辞职而去。因此,作为一个管理者,必须把社会主义核心价值观和企业文化,与自己的价值标准融为一体,并通过奖惩手段的具体实施明白无误地表现出来,对超越目标任务的创新创造和卓越贡献,给予重奖;对圆满完成目标任务的给予肯定;对没有完成目标任务的给予否定;对给单位造成经济损失和恶劣影响的给予重罚。
二、用规章制度管人。管理者的管理对象是人,其主要任务是:对外协调与相关单位和客户(个人)的关系,对内协调各部门之间的关系。因此,作为管理者,一定要充分发挥助手、各个职能部门和业务骨干的作用,使其各司其职,各负其责,恪尽职守,具体工作事务按照既定的路线图,时间表,工作流程操作和运行,严格按照规章制度办事,做到管理者即使不在岗,单位也能够按步就班,正常运转。
三、调查研究,预判和展望未来。日常事务由助手去处理,具体工作由部门来落实。作为管理者,工作重点要放在调查研究,分析形势,预判单位未来发展等问题上,集中精力,研究解决关乎单位生死存亡和安全运行的热点、重点和疑难问题,以及助手和一些部门无法解决的问题。决策一些重大事情时,既征求助手、相关部门的意见和建议,又听取上级主管部门的意见,还要认真了解本领域、本行业、本系统的相关情况。当自己的意见与其他多数人的意见不一致时,最好放一放,不急着做决定,再多做些调查研究,特别是与持不同意见的员工进行沟通,认真听取其意见和建议,以免给单位工作造成失误。
通过上述工作、学习和实践,就能从外行变成内行,成为一名优秀的管理者。
不懂工程怎么去搞工程
不懂工程的话,你可以去接工程,把接来了工程相关的业务转包给别人,然后你只提取相应的管理费或者介绍费就可以。
如果不找工程不懂工程的话,你可以找好财务,比如材料款,比如一些工程的进度,还有一些工人对工人资金管理,这是比较简单的,因为这个牵扯到一些效率问题,你可以不懂投资,但是你可以监督工人干活,然后把括号材料罐和进度款的那个申请。
外行如何进入人工智能行业?
一、外行怎样进入人工智能行业,先高清人工智能有哪些方向?
人工智能专业就业方向,人工智能方向,人工智能的发展方向,人工智能研究方向,人工智能方向研究生,计算机人工智能方向,人工智能未来发展方向,人工智能考研方向,人工智能有哪些方向,人工智能未来方向,人工智能创业方向,人工智能方向的专业,人工智能应用方向,人工智能投资方向,人工智能对就业的影响。
二、外行如何进入人工智能行业,不是简单做一件事。
1、海量的数据。这基本是千万以上的数据,所以当你听很多人说大数据(有一万个样本),都是没有用的,千万级别的数据。
2、这时候还需要顶尖的科学家,不是一个程序员、工程师就可以做的。
3、要有非常清晰领域的边界,因为人工智能只能懂一件事情,让它跨领域是做不到的。就像现在我跟你说“中午我不想吃汉堡”,你们都能听懂,但是如果你跟一个人工智能这样跳跃领域去讲,它是搞不懂的。
4、要有非常好的标注,比如你用百度时候每一次的点击,去淘宝时每一次的购买,你在滴滴每次成功的搭上车,都是告诉系统我成功了。当你每次在百度没有点击,在淘宝没有购买,在滴滴没有打上车,也是告诉系统这是一个标注。没有标注的数据,意义是不大的。
5、用这么大的数据,要有非常多的计算量,这时候人工智能才可以形成。
可能很多人说,人工智能是什么机器人、无人驾驶,这个好长远啊。其实不是的,你每次在用百度、淘宝、滴滴的时候,它背后都是一个人工智能的引擎。
人工智能是一个很大的概念,现在很多的公司所谓的AI应用还是停留在比较初级的阶段,进行一些信息(数据)的分类,筛选,模式识别之类,许多语言都有成型的代码包,开源代码之类,用起来并没有太大的技术含量,要想达到实际的应用效果,更多的是需要大数据的支持,不断在算法上进行优化,而要在算法上进行创新基本上和你学什么语言(java、c、汇编)是无关的,可能更多的需要数学基础。像IBM、Google等大公司可能走得更远一些,例如谷歌的下一步将迈向何方里面介绍的,这些基本上就是非常前沿的人工智能的成果了。
现在比较火的一些智能设备,智能家居,我并不觉得算是人工智能,更多的是各类传感器加上程序规则的应用,可能这类行业会更贴近生活更有市场一些吧,前景倒是非常看好的。不过和做软件一样,并不是技术有多牛就一定能做出好的软件产品,一定要深入了解用户需求,注重用户体验,以你的背景来说,我觉得可能往这个方向发展会有更好的效果。
三、外行要转行到人工智能行业需要学习什么?
目前,人工智能已经成为越来越火的一个方向。普通程序员,外行从业者,如何转向人工智能方向,最好遵循下面一些学习方法。
1、学习目的
目的是给出一个简单的,平滑的,易于实现的学习方法,帮助“普通”程序员或外行踏入AI领域这个门。我建议外行最好先学习拥有普通程序员的知识,这里,我对普通程序员的定义是:拥有大学本科知识;平时工作较忙;自己能获取的数据有限。
2、AI领域简介
AI,也就是人工智能,并不仅仅包括机器学习。曾经,符号与逻辑被认为是人工智能实现的关键,而如今则是基于统计的机器学习占据了主导地位。最近火热的深度学习正是机器学习中的一个子项。目前可以说,学习AI主要的是学习机器学习。
但是,人工智能并不等同于机器学习,这点在进入这个领域时一定要认识清楚。关于AI领域的发展历史介绍推荐看周老师写的《机器学习简介》。下面一个问题是:AI的门好跨么?其实很不好跨。我们以机器学习为例。
在学习过程中,你会面对大量复杂的公式,在实际项目中会面对数据的缺乏,以及艰辛的调参等。如果仅仅是因为觉得这个方向未来会“火”的话,那么这些困难会容易让人放弃。考虑到普通程序员的特点,而要学习如此困难的学科,是否就是没有门路的?答案是否定的。只要制定合适的学习方法即可。
3、学习方法
学习方法的设定简单说就是回答以下几个问题:我要学的是什么?我怎样学习?我如何去学习?这三个问题概括说就是:学习目标,学习方针与学习计划。学习目标比较清楚,就是踏入AI领域这个门。这个目标不大,因此实现起来也较为容易。“过大的目标时就是为了你日后放弃它时找到了足够的理由”。
学习方针可以总结为“兴趣为先,践学结合”。简单说就是先培养兴趣,然后学习中把实践穿插进来,螺旋式提高。这种方式学习效果好,而且不容易让人放弃。有了学习方针以后,就可以制定学习计划,也称为学习路线。下面就是学习路线的介绍。
四.学习路线
我推荐的学习路线是这样的,如下图:
?
请点击此处输入图片描述
图1AI领域学习路线图
这个学习路线是这样设计的:首先了解这个领域,建立起全面的视野,培养起充足的兴趣,然后开始学习机器学习的基础,这里选择一门由浅入深的课程来学习,课程最好有足够的实验能够进行实战。基础打下后,对机器学习已经有了充足的了解,可以用机器学习来解决一个实际的问题。
这时还是可以把机器学习方法当作一个黑盒子来处理的。实战经验积累以后,可以考虑继续进行学习。这时候有两个选择,深度学习或者继续机器学习。深度学习是目前最火热的机器学习方向,其中一些方法已经跟传统的机器学习不太一样,因此可以单独学习。除了深度学习以外,机器学习还包括统计学习,集成学习等实用方法。
如果条件足够,可以同时学习两者,一些规律对两者是共通的。学习完后,你已经具备了较强的知识储备,可以进入较难的实战。这时候有两个选择,工业界的可以选择看开源项目,以改代码为目的来读代码;学术界的可以看特定领域的论文,为解决问题而想发论文。
无论哪者,都需要知识过硬,以及较强的编码能力,因此很能考察和锻炼水平。经过这个阶段以后,可以说是踏入AI领域的门了。“师傅领进门,修行在个人”。之后的路就要自己走了。
下面是关于每个阶段的具体介绍:
领域了解
在学习任何一门知识之前,首先第一步就是了解这个知识是什么?它能做什么事?它的价值在什么地方?如果不理解这些的话,那么学习本身就是一个没有方向的舟,不知道驶向何处,也极易有沉船的风险。了解这些问题后,你才能培养出兴趣,兴趣是最好的引路人,学习的动力与持久力才能让你应付接下来的若干个阶段。关于机器学习是什么,能做什么,它与深度学习以及人工智能的关系,可以看我写的博客从机器学习谈起:
知识准备
如果你离校过久,或者觉得基础不牢,最好事先做一下准备复习工作。“工欲善其事,必先利其器”。以下的准备工作不多,但足以应付后面阶段的学习。
数学:复习以下基本知识。线性代数:矩阵乘法;高数:求导;概率论:条件与后验概率。其他的一些知识可以在后面的学习的过程中按需再补;
英文:常备一个在线英文词典,例如爱词霸,能够不吃力的看一些英文的资料网页;
FQ:可以随时随地上Google,这是一个很重要的工具。不是说百度查的不能看,而是很多情况下Google搜出来的资料比百度搜的几十页的资料还管用,尤其是在查英文关键字时。节省时间可是很重要的学习效率提升;
机器学习
机器学习的第一门课程首推AndrewNg的机器学习。这门课程有以下特点:难度适中,同时有足够的实战例子,非常适合第一次学习的人。cs229这门课程我这里不推荐,为什么,原因有以下:
时间:cs229的时间太早,一些知识已经跟不上当今的发展,目前最为火热的神经网络一笔带过。而Cousera上神经网络可是用了两个课时去讲的!而且非常详细;
教学:Ng在cs229时候的教学稍显青涩,可能是面对网络教学的原因。有很多问题其实他都没有讲清楚,而且下面的人的提问其实也很烦躁,你往往不关心那些人的问题。这点在Coursera上就明显得到了改善,你会发现Ng的教学水平大幅度改善了,他会对你循循善诱,推心置腹,由浅入深的教学,在碰到你不明白的单词术语时也会叫你不要担心,更重要的,推导与图表不要太完善,非常细致清晰,这点真是强力推荐;
字幕:cs229的字幕质量比Coursera上的差了一截。Coursera上中文字幕翻译经过了多人把关,质量很有保证;
作业:cs229没有作业,虽然你可以做一些,但不会有人看。这点远不如Coursera上每周有deadline的那种作业,而且每期作业提交上去都有打分。更重要的是,每期作业都有实际的例子,让你手把手练习,而且能看到自己的成果,成就感满满!
实践做项目
学习完了基础课程,你对机器学习就有了初步了解。现在使用它们是没有问题的,你可以把机器学习算法当作黑盒子,放进去数据,就会有结果。在实战中你更需要去关心如何获取数据,以及怎么调参等。如果有时间,自己动手做一个简单的实践项目是最好的。
这里需要选择一个应用方向,是图像(计算机视觉),音频(语音识别),还是文本(自然语言处理)。这里推荐选择图像领域,这里面的开源项目较多,入门也较简单,可以使用OpenCV做开发,里面已经实现好了神经网络,SVM等机器学习算法。项目做好后,可以开源到到Github上面,然后不断完善它。实战项目做完后,你可以继续进一步深入学习,这时候有两个选择,深度学习和继续机器学习;
深度学习
深度学习:深度学习是目前最火热的研究方向。有以下特点:知识更新快,较为零碎,没有系统讲解的书。因此学习的资源也相对零散,下面是一些资源介绍。其中不推荐的部分并不代表不好,而是在这个初学阶段不合适:
推荐,UFLDL:非常好的DL基础教程,也是AndrewNg写的。有很详尽的推导,有翻译,且翻译质量很高;推荐,Deeplearning(paper):2015年Nature上的论文,由三位深度学习界的大牛所写,读完全篇论文,给人高屋建瓴,一览众山小的感觉,强烈推荐。如果只能读一篇论文了解深度学习,我推荐此篇。这篇论文有同名的中文翻译;推荐,Neuralnetworksanddeeplearning:这本书的作者非常擅长以浅显的语言表达深刻的道理,虽然没有翻译,但是阅读并不困难;推荐,RecurrentNeuralNetworks:结合一个实际案例告诉你RNN是什么,整篇教程学完以后,会让你对RNN如何产生作用的有很清晰的认识,而这个效果,甚至是读几篇相关论文所没有的;
不推荐,NeuralNetworksforMachineLearning–UniversityofToronto|Coursera:深度学习创始人教的课,最大的问题是太难,而且老先生的吐字有时不是很标准;不推荐,DeepLearning(book):同样也是由深度学习大牛所写的书,但感觉就像是第二作者,也就是他的学生所写的。很多内容都讲了,但是感觉也没讲出什么内容来,只是告诉你来自那篇论文,这样的话可能直接阅读论文更合适。不推荐,cs231n:李菲菲的课程,很有名,专门讲CNN。但是这门课程有一个最大的问题,就是没有字幕,虽然有youtube的自动翻译字幕,但有还不如没有。
继续机器学习
深度学习未必就是未来的一定主流,至少一些大牛是这么认为的。传统的机器学习有如下特点,知识系统化,有相对经典的书。其中统计学习(代表SVM)与集成学习(代表adaboost)是在实践中使用非常多的技术。下面是相关资源:
推荐,机器学习(周志华):如果是在以前,机器学习方面的经典教材首推PRML,但现在周老师的书出来以后,就不再是这样了。首先推荐读周老师的书。这本书有一个特点,那就是再难的道理也能用浅显精炼的语言表达出来。正如周老师的名言:“体现你水平的地方是把难的东西讲容易了,而不是把容易的东西讲难,想把一个东西讲难实在太简单”;
不推荐,PatternRecognitionAndMachineLearning:当前阶段不推荐。PRML是以贝叶斯的观点看待很多机器学习方法,这也是它的一大特色。但对于初学者来说,这种观点其实并无必要。而且此书没有中文翻译,当前阶段硬啃很容易放弃;
开源项目
当知识储备较为充足时,学习可以再次转入实践阶段。这时候的实践仍然可以分两步走,学习经典的开源项目或者发表高质量的论文。开源项目的学习应该以尽量以优化为目的,单纯为读代码而学习效果往往不太好。好的开源项目都可以在Github里搜索。这里以深度学习为例。深度学习的开源优秀库有很多,例如torch,theano等等,这里列举其中的两个:
推荐,DeepLearnToolbox:较早的一个深度学习库,用matlab语言撰写,较为适合从刚学习的课程转入学习。遗憾的是作者不再维护它了;
推荐,tensorflow:Google的开源库,时至今日,已经有40000多个star,非常惊人,支持移动设备;
会议论文
较好的课程都会推荐你一些论文。一些著名的技术与方法往往诞生于一些重要的会议。因此,看往年的会议论文是深入学习的方法。在这时,一些论文中的内容会驱使你学习数学中你不擅长的部分。有时候你会觉得数学知识储备不够,因此往往需要学习一些辅助课程。
当你看完足够的论文以后,在这个阶段,如果是在校学生,可以选择某个课题,以发论文为目的来学习研究。一般来说,论文是工作的产物。有时候一篇基于实验的论文往往需要你写代码或者基于开源项目。因此开源项目的学习与会议论文的工作两者之间是有相关的。
两者可以同时进行学习。关于在哪里看论文,可以看一下CCF推荐排名,了解一下这个领域里有哪些优秀的会议。
下面介绍两个图像与机器学习领域的著名顶级会议:
CVPR:与另两个会议ICCV和ECCV合称计算机视觉领域的三大会,注意会议每年的主页是变动的,因此搜索需要加上年份;
ConferenceonNeuralInformationProcessingSystems:简称NIPS,许多重要的工作发表在这上面,例如关于CNN的一篇重要论文就是发表在上面;
自由学习
到这里了,可以说是进入这个门了。下面可以依据兴趣来自由学习。前阶段不推荐的学习资源也可随意学习,下面是点评:
cs229:Ng写的讲义很不错,其中关于SVM的推导部分很清晰,想学习SVM推荐;
NeuralNetworksforMachineLearning:大牛的视角跟人就是不一样,看看Hinton对神经网络是怎么看的,往往会让你有种原来如此的感悟。其实看这门课程也等同于读论文,因为几乎每节课的参考资料里都有论文要你读;
CS231n:ConvolutionalNeuralNetworksforVisualRecognition:最新的知识,还有详细的作业。国内应该有团队对字幕进行了翻译,可以找找;
PRML:作为一门经典的机器学习书籍,是很有阅读必要的,会让你对机器学习拥有一个其他的观察视角;
四、总结
以上意见和见解的目的是帮助对AI领域了解不深,但又想进入的同学踏入这个门。这里只说踏入,是因为这个领域的专精实在非常困难,需要数年的积累与努力。在进行领域学习前,充分认识自己的特点,制定合适的学习方法是十分重要的。
首先得对这个领域进行充分了解,培养兴趣。在学习时,保持着循序渐进的学习方针,不要猛进的学习过难资源;结合着学习与实践相辅的策略,不要只读只看,实际动手才有成就感。学习某个资源时要有充分的目的,不是为了学开源项目而看代码,而是为了写开源项目而看;不是为了发论文而写论文,而是为了做事情而写论文。
如果一个学习资源对你过难,并不代表一定是你的问题,可能是学习资源的演讲或撰写人的问题。能把难的问题讲简单的人才是真正有水平的人。所以,一定要学习优质资源,而不是不分青红皂白的学习。最后,牢记以兴趣来学习。学习的时间很长,过程也很艰难,而只有兴趣才是让你持之以恒,攻克难关的最佳助力。
谨以此提出一些意见与在学海中乘舟的诸位共勉。实际中还需自己探索。我就是一名普通技术员,刚刚转入AI领域,还有很多不足。希望此文可以帮助到大家。在很近的未来,在无数科学家的努力与求索之下,人工智能会快速在各行各业开花结果,循序渐进地改变人类的工作、职业习惯、行为方式,甚至是思维方式。人类因此更加强大,生活更加便捷,机会选择更加丰富。
人工智能除了下棋还能做什么?
不再只下棋的谷歌A.I.开始探索外星生命存在的可能。
动点科技最新获悉:NASA科学家成功地在开普勒-90星系中找到了一颗新的地外行星,将其命名为开普勒-90i。还在另外一个星系开普勒-80里找到了一颗开普勒-80g。据了解开普勒-90星系距离地球2,545光年(约24,077万亿公里),加上新发现的开普勒-90i,该星系一共拥有8颗行星。开普勒-90星系成为了迄今为止人类天文观测到的行星最多的星系,虽然本身这项发现就是一件科学界的大事,但更重要的是它是由Google采用机器学习算法加持对美国宇航局开普勒天文望远镜获取的数据进行分析得出的。这意味着,人工智能这趟车已开进星辰大海。
首先,科学家们制作了一个数据集来训练神经网络,这意味着可以生成600万个假想图,然后这些图像显示了引力透镜的作用。然后,神经网络对数据失去了控制,让它慢慢识别出不同的模式。最后再进行一些微调,可以在一瞬间识别出有引力透镜现象的程序。
负责人Petrillo说:“一个高水平的人类工程师团队每小时可以筛选出1000个图像对比。”比如他自己的团队估算出的数据,大约每3万个星系中就会出现一个。因此,一周无休的情况下也最多只能找出五到六个。相比之下,神经网络可以在短短20分钟之内筛选21789张图片数据库。Petrillo说,这还是一个古老的计算机处理器,但已经可以大幅缩短过程。
神经网络并不像计算机那么精确,为了避免遗漏,它的参数筛选条件并不严格。它会产生761个可能的后选择,再通过人类的方式筛选,最后缩小到56个。这种方法需要人类的进一步观察来配合。但Petrillo表示,其中只有大约三分之一的数据有效。与过去几十年整个科学界发现大约100个引力透镜相比,现在每一分钟就会发现一个。这是一个令人难以置信的提升速度,也是非常完美的方法。
找到这些现象对于天文学的奥秘发现有着重要的意义。宇宙到底是什么构成,我们所熟悉的物质(包括行星、恒星、小星星等)只占宇宙空间物质的5%,而其余不知道成分的物质,占了95%的比例。这包括一种被称为暗物质的假象物,但人类从未直接观测到。相反,我们研究它对宇宙的引力作用,可以作为引力透镜的关键指标。
那么人工智能技术还能做些什么呢?研究人员正在研发一些新的工具。比如Petrillo就在进行类似于身份识别的工作,他对星系进行分类。而还有一些科学家则在帮助梳理数据流,寻找有趣的信号,比如一个神经网络,可以消除来自于无线电望远镜的人为干扰,帮助科学家寻找到更有价值的信号。而更多的应用是用来识别脉冲恒星,定位异常的外行星,或者提高天文望远镜的图像分辨率。简而言之,人工智能还有大量的潜在应用价值。
著名物理学家史蒂芬·霍金教授此前曾经说过,在未来100年内,人工智能的机器人将反过来控制我们人类在最新的一次讲话中,霍金教授表示如果人工智能未有征服人类,那么先进的外星文明将会这样做。不过现在看来,两者可能会携手制造这样的危机。
关于本次外行怎么切入人工智能领域和外行怎么切入人工智能领域的的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件