人类成为宠物 人工智能,人类成为宠物 人工智能的原因

日期: 浏览:3

老铁们,大家好,相信还有很多朋友对于人类成为宠物 人工智能和人类成为宠物 人工智能的原因的相关问题不太懂,没关系,今天就由我来为大家分享分享人类成为宠物 人工智能以及人类成为宠物 人工智能的原因的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!

本文目录

  1. 人类害怕人工智能吗?有没有可能人类本身就是人工智能?
  2. 在未来人工智能时代还会有人养狗或猫作为宠物吗?
  3. 如今的宠物,数万年后是否会成为像人一样得智慧生物?
  4. 现在转行学习人工智能还来得及吗?为什么?

人类害怕人工智能吗?有没有可能人类本身就是人工智能?

人类不会害怕人工智能,可能有部分人对人工智能感到神奇而产生费解和担忧。当然,人类本身更不会是人工智能。这后面的问题相当幼稚。

在未来人工智能时代还会有人养狗或猫作为宠物吗?

答案是肯定的。因为动物有情感,情感这种东西人工智能是暂时无法取代的,如果一个电子宠物死了和一个真实的宠物死了你的心情是完全不一样的,因为真实的动物很多人已经把它们当做的了亲人

如今的宠物,数万年后是否会成为像人一样得智慧生物?

应该还是类人猿。接触人的狗肯定会越来越聪明,但受限于种类结构。狗的大脑结构会受限于某个不能逾越的缺陷。而类人猿更接近人类,在走向智慧生物的道路上,他们的前途更光明。已经有类人猿能使用手语和人交流了。如果创造一个场所对其进行人工选择,并教授其语言和工具----可能用不了数百年,几十代或许就有一定的智慧了。

不会是狗。现代进化论已经证明:后天的影响不会改变基因。用进废退是拉马克的理论,已经证明错误。只有随机的基因突变会产生更高智商的狗,而几万年太短,不足以产生如此大的改变。

现在转行学习人工智能还来得及吗?为什么?

任何时候都来得及。给亲推荐一个童鞋曾经问我们的问题:25岁Java工程师如何转型学习AI?希望对你有所启发。

他的问题是这样的:“我是一名25岁的Java开发工程师。本科学习的专业是信息与计算科学(数学专业),因为对计算机方面感兴趣,之后培训学习了Java,所以现在从事Java开发。目前就是在电商公司开发一些系统。

我对人工智能非常感兴趣,对数学的兴趣也从未减弱。人工智能设计的学习材料很多,像我这样的状况,如果想要转型以后从事这方面的工作,具体应该学习些什么?”

阿里技术童鞋“以均”回信:

首先,我想聊聊为何深度学习最近这么火。

外行所见的是2016年AlphaGo4比1战胜李世石,掀起了一波AI热潮,DeepMind背后所用的深度学习一时间火得不得了。其实在内行看来,AlphaGo对阵李世石的结果是毫无悬念的,真正的突破在几年前就发生了。

2012年,GeffereyHinton的学生Alex使用一个特别构造的深度神经网络(后来就叫AlexNet),在图像识别的专业比赛ImageNet中,得到了远超之前最好成绩的结果,那个时候,整个人工智能领域就已经明白,深度学习的革命已经到来了。

果然,之后深度学习在包括语音识别,图像理解,机器翻译等传统的人工智能领域都超越了原先各自领域效果最好的方法。从2015年起,工业界内一些嗅觉灵敏的人士也意识到,一场革命或已到来。

关于基本概念的学习

机器学习与深度学习

深度学习是机器学习中的一种技术,机器学习包含深度学习。机器学习还包含其他非深度学习的技术,比如支持向量机,决策树,随机森林,以及关于“学习”的一些基本理论,比如,同样都能描述已知数据的两个不同模型,参数更少的那个对未知数据的预测能力更好(奥卡姆剃刀原理)。

深度学习是一类特定的机器学习技术,主要是深度神经网络学习,在之前经典的多层神经网络的基础上,将网络的层数加深,并辅以更复杂的结构,在有极大量的数据用于训练的情况下,在很多领域得到了比其他方法更好的结果。

机器学习与大数据

大数据:机器学习的基础,但在多数语境下,更侧重于统计学习方法。机器学习,深度学习,数据挖掘,大数据的关系可以用下图表示

系统学习资料

深度学习火起来之后,网上关于深度学习的资料很多。但是其质量参差不齐。我从2013年开始就关注深度学习,见证了它从一个小圈子的领先技术到一个大众所追捧的热门技术的过程,也看了很多资料。我认为一个高质量的学习资料可以帮助你真正的理解深度学习的本质,并且更好地掌握这项技术,用于实践。

以下是我所推荐的学习资料:

首先是视频课程。

YaserAbu-Mostafa

加州理工的YaserAbu-Mostafa教授出品的机器学习网络课程,非常系统地讲解了机器学习背后的原理,以及主要的技术。讲解非常深入浅出,让你不光理解机器学习有哪些技术,还能理解它们背后的思想,为什么要提出这项技术,机器学习的一些通用性问题的解决方法(比如用正则化方法解决过拟合)。强烈推荐。

课程名称:MachineLearningCourse-CS156

GeoffreyHinton

深度学习最重要的研究者。也是他和另外几个人(YannLeCun,YoshuaBengio等)在神经网络被人工智能业界打入冷宫,进入低谷期的时候仍然不放弃研究,最终取得突破,才有了现在的深度学习热潮。

他在Coursera上有一门深度学习的课程,其权威性自不待言,但是课程制作的质量以及易于理解的程度,实际上比不上前面YaserMostafa的。当然,因为其实力,课程的干货还是非常多的。

课程名称:NeuralNetworksforMachineLearning

UdaCity

Google工程师出品的一个偏重实践的深度学习课程。讲解非常简明扼要,并且注重和实践相结合。推荐。

小象学院

国内小象学院出品的一个深度学习课程,理论与实践并重。由纽约城市大学的博士李伟主讲,优点是包含了很多业内最新的主流技术的讲解。值得一看。

阿里云大学

出了很多免费的机器学习课程,理论和实践相结合。

推荐阅读书目

《DeepLearningtheBook》——这本书是前面提到的大牛YoshuaBegio的博士生Goodfellow写的。Goodfellow是生成式对抗网络的提出者,生成式对抗网络被YannLeCun认为是近年最激动人心的深度学习技术想法。这本书比较系统,专业,偏重理论,兼顾实践,是系统学习深度学习不可多得的好教材。英文版:http://deeplearningthebook.com目前Github上已经有人翻译出了中文版:https://github.com/exacity/deeplearningbook-chinese

推荐学习路径

不同的人有不同的需求,有些人希望掌握好理论基础,然后进行实践,有些人希望能够快速上手,马上做点东西,有些人希望理论与实践兼顾。下面推荐几条学习路径,照顾到不同的需求。大家可以根据自己的特点进行选择。

HardwayYaser->GeoffreyHinton->UdaCity->GoodFellow

特点:理论扎实,步步为营。最完整的学习路径,也是最“难”的。

推荐指数:4星

GoodwayYaser->UdaCity->小象学院->GoodFellow

特点:理论扎实,紧跟潮流,兼顾实战,最后系统梳理。比较平衡的学习路径。

推荐指数:5星

"Fast"wayUdaCity->GoodFellow

特点:快速上手,然后完善理论。

推荐指数:4星

"码农"wayUdaCity

特点:快速上手,注重实践。

推荐指数:3星

---end---

更多技术干货敬请关注云栖社区头条号!

关于人类成为宠物 人工智能到此分享完毕,希望能帮助到您。

推荐阅读
美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件
人类成为宠物 人工智能,人类成为宠物 人工智能的原因文档下载: PDF DOC TXT