大家好,今天给各位分享人工智能与金融理论的一些知识,其中也会对人工智能与金融论文进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!
本文目录
人工智能在金融中能发挥什么样的作用?
人工智能在金融领域是可以发挥多样性作用,但首先我们要了解人工智能是什么?
百度百科上的解释是:人工智能,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。也就是说利用人本身的智能与分析问题、解决问题,形成一种算法机制。
在金融中,获客、风控、身份识别、客服等金融行业中的内容都可以利用人工智能进行改变,以较容易理解的客服为例,传统的金融客服都是人工的,而通过人工智能技术和自然语言处理,可以将客户问题进行分析,通过算法给出准确的回复,这就大大节省了金融服务的成本,在这一方面,传统金融机构并不都具备这样的技术实力,但是许多大型互联网公司都结合自身技术优势对此进行了技术研发,并将研发成果输出给金融机构,形成了良性循环。
例如,百度就已经开始利用多年积累的自然语言处理技术,向传统金融机构赋能。利用人工智能,更好地理解用户意图,通过多轮会话的形式解决用户的提问,使用户体验大大提升。
数据显示:百度金融智能客服能够处理97%的在线咨询,金融业务问题解决率达90%以上;在语音场景中,基于语音识别能力,智能语音质检在多个关键服务项的覆盖率达到100%,保障了更好的服务体验。
想要高薪,人工智能专业考研和金融专业考研怎么选?
要想高薪,人工智能专业和金融专业考研怎么选择?这个问题要具体的分析,辩证地看待,科学的选择,才能做出正确的回答。
首先,因为人工智能和金融专业都有特色鲜明实力强大的院校。要看你具有被哪个院校能够录取的实力和能力。换而言之,要想高薪,必须选择人工智能或者金融类实力强大的院校才能解决高薪待遇的问题。如果你选择这两个专业中的任何一个专业特色相当一般,没有强大实力的院校或者专业实力表现一般的院校,要想高薪是根本不可能的。
其次,你可以根据自己的特长,兴趣,爱好,能力进行报考,但是前提是必须选择该专业具有强大影响力的院校。
你如果报考金融类的相关专业的硕士研究生,你如果能够被北京大学,中国人民大学,南京大学,清华大学,复旦大学,上海大学,中央民族大学,南开大学,吉林大学,华东理工大学,华东师范大学,华中科技大学,中山大学等院校的相关专业录取,绝对会有高薪的待遇。
你如果对人工智能专业感兴趣,这个专业也是当前最火爆的专业。必须选择;
清华大学北京大学浙江大学上海交通大学复旦大学哈尔滨工业大学中国科学技术大学华中科技大学东南大学北京航空航天大学西安交通大学中山大学四川大学吉林大学同济大学武汉大学山东大学电子科技大学中南大学南开大学西安电子科技大学湖南大学重庆大学天津大学大连理工大学北京师范大学厦门大学华南理工大学你只要考上其中的任何一所大学,都能实现你高薪待遇的目的。
在金融领域,人工智能最大的潜力究竟是什么?
近来,人工智能已成为全球各行业的关注点,就金融领域而言,人工智能属于Fintech一系列技术创新中的一种,Fintech,即FinancialTechnology,可界定为是基于大数据、云计算、人工智能、区块链等技术全面应用于支付清算、借贷融资、财富管理、零售银行、保险、交易结算等金融领域,实现金融+科技高度融合。一言蔽之,人工智能同金融科技中的其他技术一样是将科学技术应用于金融行业服务于普罗大众,降低行业成本,提高行业效率的技术手段。
截止今年6月,全球共有超过1362家Fintech公司,来自超过54个国家,融资总额超过497亿美元。埃森哲的研究报告表明,全球金融科技产业投资在2015年增长75%至223亿美元。美国纳斯达克和投资银行KBW携手推出了KBWNasdaq金融科技指数KFTX,该指数共49只成分股,全部市值约为7850亿美元,占美国国内股票市值的4%,这也是第一只仅包含在美国上市的金融科技公司的指数,Fintech产业链井喷式的发展仍然持续,中国金融科技行业增长445%,接近20亿美元,该行业越来越受到全世界的关注。
同样,人工智能在金融领域的运用也在不断被研究深化,应用场景不断多元化。在讨论人工智能在金融领域中的应用潜力之前,我们先来了解下人工智能较其他技术而言独有的特性,用《时空中的金融科技》中的一句话来概括:“人工智能正在提升价值跨时间使用的能力,证明时间就是金钱的这一说法。”具体来说人工智能能够在以下三个方面“跑赢”时间:
1、快速吸收信息、将信息转化为知识的能力。人工智能在对文本、语音和视频等非结构化信息的获取方面出现较大飞跃,人类手工收集、整理、提取非结构化数据中有用信息的能力已不如人工智能程序,特别是文本信息,在自然语言处理和信息提取领域,这样的技术不仅限于二级市场的量化交易,对一个公司上市前各融资阶段或放贷对象的基本面分析乃至在实体经济中对产业生态和竞争格局的分析等都可以使用这样的技术来争取时间优势。
2、在领域建模和大数据分析基础上预测未来的能力。时间最本质的属性就是其箭头不可逆。未来是不确定的,但又是有规律可循的。基于知识图谱的领域建模、基于规模化大数据的处理能力、针对半结构化标签型数据的分析预测算法三者的结合,是人工智能在时间维度上沟通过去和未来,减少跨越时间的价值交换带来的风险的优势所在。
3、在确定规则下优化博弈策略的能力。价值交换领域充满了博弈,博弈皆需解决局势判断和最优对策搜索两个基本问题。人工智能由于人类,第一因为人工智能可以比人更充分地学习有史以来的所有公开数据;第二,人工智能可以比人更充分地利用离线时间采用左右互搏来增强学习策略;第三,人工智能可以几万台电脑共同协作,相对于几万人的协作而言不存在人类面对利益考量以及各种不淡定乃至贪婪的表现。所以,人工智能在博弈环节的普遍应用,也是一个必然的趋势。
具体到人工智能在金融领域的应用,笔者认为具有潜力的应用场景为量化投资以及智能投顾(或智能金融管家)、风险管理领域等。
量化投资已有实际案例,对标全球,世界最大的对冲基金桥水联合在2013年开启一个新的人工智能团队。RebellionResearch运用机器学习进行量化资产管理于2007年推出了第一个纯投资基金。今年9月末安信证券开发的A股机器人大战5万投资者的结局揭晓,从6月1日至9月的三个月里,以24.06%(年化96%)的累计收益率战胜了98%的用户。机器人运作模式是先从基本面、技术面、交易行为、终端行为、互联网大数据信息、第三方信息等衍化成一个因子库,属于数据准备过程,将因子数据提炼生成训练样本,然后选取机器学习算法进行建模训练,最后保留有效因子生成打分方程输出组合。机器人大数据量化选股较人类从基本面、公司财务等方面挑选因子量化选股而言更偏向从基本面、技术、投资者情绪行为类等方面挑选因子,对IT技术、数据处理技术的要求较高。
在智能投顾方面(智能金融管家)也已有初步的运用。广义的智能投顾,考虑投资者的财务情况对其进行个人财富精算配置,比如统筹考虑支票、储蓄、投资和养老保险。对于偏好主动进行资产管理的投资者,智能投顾能够根据投资者的问题,智能的分析海量信息给出答案。从国外的实践来看,智能投顾产品主要有投资推荐、财务规划和智能分析三种。具体应用案例如下:1)摩羯投顾:招商银行发布APP5.0,“摩羯智投”成为最大看点。摩羯智投运用机器学习算法,试图整合招商银行十多年财富管理实践及基金研究经验,并在此基础上构建以公募基金为底层资产,全球范围配置的“智能基金组合配置服务”。在利率市场化尾声之际,摩羯智投的问世,标志着银行等金融机构应对“储蓄搬家”的应对。对标海外智能投顾的资产管理规模已经从2012年几乎为零增加到2015年底的187亿美元。ATKearney预测,未来五年,机器人投顾的市场复合增长率将达到68%,到2020年,机器人投顾资产管理规模将突破2.2万亿美元。2)智能报告:人工智能能够自动搜集企业公告、上百万份研报、维基百科等公开知识库等披露信息后通过自然语言处理和知识图谱来自动生成报告。速度为0.4秒/份,60分钟即可生成全市场9000份新三板挂牌公司报告,在时空上的优势由此得以体现。3)信用卡还款:截至2015年末,全国人均持有银行卡3.99张,现代消费模式中,人们已习惯了信用卡或者手机绑定信用卡进行消费。一人多卡的现象有时会让持卡人忘记按时还款,逾期不还款的高额滞纳金会让用户产生损失。此类情况下人工智能能够将用户所有的信用卡集中管理,帮助用户在不同的还款期内合理安排资金,以支付最少的滞纳金。若账户没有余额的情况发生,开发公司会提供比信用卡公司利率更低的贷款,帮助用户还信用卡账单。
人工智能乃至金融科技的创新,是对金融市场、金融机构以及金融服务供给产生重大影响的新业务模式、新技术应用、新产品服务。他与传统金融并不是相互竞争的关系,而是以技术为纽带,相信未来将为有更多人工智能的应用场景出现,让传统金融行业摈弃低效、高成本的环节从而形成良性生态圈循环。
研究生阶段从事金融或者人工智能,本科学什么专业比较好?
谢谢邀请!
作为一名教育工作者,我来回答一下这个问题。
首先,金融和人工智能是完全不同的两个学科方向,需要的知识结构也存在较大的差异,金融方向有自己比较完整的知识体系,所以如果研究生期间要想选择金融方向,本科期间就应该学习金融相关专业。
与金融方向不同,人工智能方向长期以来都是以研究生教育为主,直到近几年才有部分高校在本科阶段开设了人工智能专业。人工智能是典型的交叉学科,涉及到数学、哲学、计算机、控制学、经济学、神经学和语言学等,所以这些相关学科理论上都可以在读研时选择人工智能方向,但是按照历史经验来看,数学和计算机专业的学生在读研时更愿意选择人工智能方向。
以计算机相关专业为例,计算机科学与技术、软件工程、大数据和物联网这几个专业与人工智能的关系比较紧密,可以重点考虑一下。计算机科学与技术专业是比较传统的计算机专业之一,特点是知识面比较广且注重计算机基础知识,所以在读研时也可以有更大的选择空间。
大数据专业目前是热门专业之一,随着大数据逐渐开始落地应用,未来大数据领域将释放出大量的人才需求,从近几年研究生的就业情况来看,不少研究生会从事大数据开发和大数据分析岗位。相信在产业互联网的推动下,未来大数据专业会受到更多的关注。
随着5G通信的落地应用,物联网领域也将成为一个创新、创业的热点领域,目前物联网技术体系结构也在不断扩展,从目前的发展趋势来看,物联网将是人工智能技术重要的落地应用场景之一,所以本科期间选择物联网专业也是不错的选择。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
关于人工智能与金融理论,人工智能与金融论文的介绍到此结束,希望对大家有所帮助。
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件