一、人工智能涉及领域包括GIS吗
从机器翻译到语音、图像识别,再到无人驾驶,人工智能(ArtificialIntelligence,AI)技术正在深入影响着我们的工作和生活。人工智能被视为与计算机、互联网相提并论的重大技术创新,已成为IT企业发展的重要目标,也是国际竞争的新焦点。聚焦GIS领域,人工智能对GIS技术的发展和应用产生了哪些巨大影响,如何驱动GIS未来发展?以下为大家分享GIS基础软件“BitCC”五大技术体系之人工智能GIS技术体系。
在AI与GIS融合的道路上,超图软件不断进行技术创新和探索,2018年推出AIGIS技术,2019年进一步构建了AIGIS技术体系:
1、GeoAI:融合AI的空间分析与处理;
2、AIforGIS:AI赋能GIS,即基于AI技术,增强和优化GIS软件功能;
3、GISforAI:GIS赋能AI,即基于GIS技术,将AI分析结果进行进一步处理分析与空间可视化展现。
基于统计学、机器学习和深度学习等人工智能基础理论与算法,面向地理空间领域问题,超图软件创新实现了一系列人工智能GIS功能,使其服务于GIS空间数据处理、分析、挖掘与综合建模。SuperMapGIS10i产品以丰富的空间统计功能为基础,主要在空间机器学习、空间深度学习两个方面深化与丰富GeoAI功能,支持人工智能GIS应用。
机器学习是现阶段人工智能的研究核心,可以让计算机实现自动“学习”。机器学习领域的三类典型问题包括聚类、分类和回归,因此主要面向这三类基本问题展开空间机器学习的研究。
目前提供的空间机器学习算子包括空间热点分析、空间密度聚类、基于森林的分类与回归分析、广义线性回归分析,帮助解决商业热点区域探查、住宅小区集聚分析、动植物适生区域识别、自然灾害易发区推测、城市不同区域房价预测等自然与社会问题。为了支持空间大数据计算,还将机器学习算法与分布式计算进行有效结合,大幅度提升了空间机器学习的性能。
深度学习是机器学习技术的一个分支,可以让计算机模拟人脑的机制进行学习。由于深度学习技术在计算机视觉、图像理解方面已展现较好应用效果,因此,超图将其应用于遥感影像分析领域,可提高影像处理效率及准确性。SuperMapGIS10i新增了基于深度学习的影像数据检测、分类、提取等算法,包括目标检测、二元分类、地物分类和场景分类等,可用于影像建筑物、道路提取、土地利用分类、局部气候分区,可广泛应用于城市规划、气象建模等领域。
图3基于空间深度学习的影像建筑物提取
由于地理信息应用的多样性,当基础模型不能完全满足用户需求时,便可以用提供的流程工具来训练自己的模型。
机器学习的一般应用步骤是选择模型—训练模型—使用模型,因此相应的GeoAI功能使用需要经历从数据准备到模型应用的完整流程,如下图所示。而SuperMapGIS10i的组件、桌面、服务器产品分别都提供了支持数据准备、模型构建、模型应用的人工智能GIS工作流程工具,方便软件使用者根据自己的数据与应用场景训练和使用自有模型。
AIforGIS,即基于AI技术增强和优化GIS软件功能。比如将AI技术应用到一些GIS传统业务中,实现GIS软件功能的智能进化。
目前SuperMap主要提供四个方面的功能:AI属性采集、AI测图、AI配图和AI交互。
AI属性采集功能可以帮助用户进行视频图像等多类目标的AI识别,例如高效采集违章停车、小广告、井盖等数据;AI测图功能提供更低成本、更为便捷的室内测图服务;AI配图功能为用户免去手工配图的繁琐流程,通过简单操作,进行风格迁移,就可以得到相对满意的地图风格;AI交互功能更是包括使用语音操控、隔空手势等丰富的交互方式,玩转GIS功能。
人工智能在不断发展的道路上,也需要不断吸收融合其他的技术,如GIS。GIS可以将更多空间可视化和空间分析能力赋予AI,将AI分析结果在GIS软件中进行进一步处理与分析。
GIS可以将空间可视化赋能AI,例如交通流量监控、城市管理部件与案件等地图可视化应用,可为决策者提供更直观的信息表达形式;GIS还可以将空间分析赋能AI,例如可进行地理围栏实时告警,车辆行驶路线追踪等,携手AI为用户提供更大价值。
未来,超图软件会持续进行AI技术与GIS技术的深度融合,增加更多的方法和工具,基于AI技术促进GIS业务的深化应用。一方面,AIGIS会持续与深度学习、机器学习等方面的研究相结合,使其逐渐走向成熟;另一方面,AIGIS也会与AutoML、AIPaaS等为代表的AI新技术不断碰撞融合。随着人工智能技术不断蓬勃发展及与GIS的结合不断深入,未来的AIGIS也将从弱人工智能走向通用人工智能。我们将Gartner2019AI光环曲线中的研究方向划分为,AIGIS初步探索涉及的内容,以及AIGIS未来探索的内容两个部分。
注:原文标题《人工智能GIS技术体系来袭》,刊登于《超图通讯》2019年12月刊,作者:超图研究院大数据与AI研发中心郑美玲卢浩
二、人工智能在汽车领域的就业岗位有
1、面向汽车制造、汽车维修、汽车销售企业,以及汽车电器与电子产品生产企业和售后服务企业,从事汽车智能化技术的检测、维修与技术服务工作。
2、技术的革新催生广阔市场。平安证券研报显示,到2020年,我国智能汽车市场规模接近600亿元。有机构表示,在政策扶持和汽车技术突破的推动下,无人驾驶产业化步伐将提速,并催生包括硬件终端、传感器、运营服务在内的车联网市场,潜在规模达千亿元级别
3、智能汽车的发展是大势所趋,更是中国汽车业发展的重大机遇。当前以智能化为重要特征的全球新一轮科技革命和产业变革正在兴起,中国将力争在全球新一轮产业变革中抢占制高点,加快推进智能汽车业创新发展,强化智能汽车领域顶层设计。
4、中国智能网联起步较晚,但政策支持力度较大,相关产品及技术的应用比例高速增加,市场化明显速度加快,短期内将爆发出庞大的市场需求和经济规模,就业前景广阔。
三、人工智能领域科技公司排名
埃斯顿是人工智能排行榜第一的公司,已经在A股市场上市,主营业务是生产工业机器人,并提供智能制造软硬件解决方案,并打造高端智能机械装备及其核心控制和功能部件的研发、生产和销售。
科沃斯也在国内A股上市,妥妥的10倍牛股,科沃斯主要生产家庭服务机器人,并对其进行设计、制造和销售,在国内的销量非常不错。
新松机器人是一家机器人自动化技术研发商,是一家研发公司,在国内名气一般。
四、人工智能在科技领域的发展
人工智能(AI)在科技领域的发展已经取得了显著的进展。以下是一些关键领域的示例:
1.自然语言处理(NLP):NLP技术使计算机能够理解、解释和生成人类语言。例如,谷歌翻译、亚马逊Alexa等使用了NLP技术来理解并响应人类的语音输入。
2.计算机视觉:计算机视觉技术使计算机能够识别、分类和检测图像和视频中的物体、场景、颜色等信息。例如,人脸识别、智能监控、无人驾驶等领域都广泛运用了计算机视觉技术。
3.机器学习(ML):ML是人工智能的关键技术之一,它允许计算机系统在没有明确编程的情况下从数据中学习并改进其性能。例如,推荐系统、欺诈检测、语音识别等领域都运用了ML技术。
4.深度学习(DL):DL是一种特定的ML技术,模拟人脑的结构和功能,尤其适用于处理大规模、复杂的数据集。例如,深度学习在图像识别、语音识别、自然语言处理等领域取得了突破性的进展。
5.强化学习(RL):RL是一种机器学习方法,使智能体通过试错来学习如何做出最优决策。例如,RL技术在游戏、机器人控制、自动驾驶等领域有着广泛应用。
6.人工智能伦理与监管:随着AI在各个领域的广泛应用,伦理和监管问题也越来越受到关注。例如,AI的公平性、透明度、安全性等问题,以及如何制定合适的政策和法规来引导AI技术的健康、可持续发展。
这些领域并不是孤立的,而是相互关联、相辅相成的。随着技术的发展,人工智能在科技领域的应用将越来越广泛,影响也越来越深远。
五、人工智能在会计领域应用的例子
1、(一)财务管理模式识别。主要是包括对一些财务信息智能化进行分类整理。财务管理模式分为两类:一是统计财务管理模式,这种模式下能对信息数据进行明确的分类,其结果比较精确,不易出错。二是模糊财务管理模式,这种模式是从众多的信息库中寻找一个较为标准的指标,然后按照这个指标对信息进行分类,其结果不如第一种模式精确。财务管理模式识别在企业的应用中较为广泛,能够把复杂的信息快速准确的进行统计分类,大大提高了企业的工作效率。
2、(二)财务核算。会计核算作为会计中的重要职能之一,在实际业务中也占了很大的工作量。传统会计需要对应付、应收等往来款项进行人工处理,手工编制凭证并与发票进行核对。而人工智能的出现则改变了传统记账方式,出现了自动记账平台。同时,很多大的企业都实现了财务共享模式,这种模式能够将集团内分公司的某些业务进行集中处理,比如会计账务处理、工资核算处理等。人工智能在财务核算中的应用大大提高了工作效率,减少了企业人工成本。
3、(三)财务分析。人工智能在会计中的另外一个重要应用就是进行财务分析。通过人工智能,能够对信息进行分类汇总,自动生成需要的报表,能够从多个维度对公司的财务状况进行分析,会计信息使用者能够从中获取到需要的信息,有利于会计信息使用者做出决策。此外,企业管理层也能够全面了解企业财务状况,以建立相应的内部控制措施,防止企业出现重大财务风险,以避免不必要的财务损失。
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件