目前,人工智能能被用于哪些行业
目前人工智能主要有以下领域的应用范围:
1、作为个人助理的应用?:比如语音识别、语音输入输出等;
2、车辆的自驾领域领域:比如智能汽车、智能公交系统、智能快递配送车等等;
3、在安防领域:比如智能监控、安防机器人等
4、在电商零售服务行业领域:比如智能导购、自动应答客服、智能无人餐厅等;
5、在医疗保健健康领域:比如智能医疗设备、智能辅助检测诊断等;
6、在金融领域:比如金融监管、智能投顾,无人银行等;
7、在教育领域:比如个性化辅导、智能评测、儿童学习互动等。
人工智能未来的应用无限大,大家尽情猜想吧。
人工智能涉及领域包括GIS吗
从机器翻译到语音、图像识别,再到无人驾驶,人工智能(ArtificialIntelligence,AI)技术正在深入影响着我们的工作和生活。人工智能被视为与计算机、互联网相提并论的重大技术创新,已成为IT企业发展的重要目标,也是国际竞争的新焦点。聚焦GIS领域,人工智能对GIS技术的发展和应用产生了哪些巨大影响,如何驱动GIS未来发展?以下为大家分享GIS基础软件“BitCC”五大技术体系之人工智能GIS技术体系。
人工智能GIS技术体系
在AI与GIS融合的道路上,超图软件不断进行技术创新和探索,2018年推出AIGIS技术,2019年进一步构建了AIGIS技术体系:
该体系包含三个核心内容:
1、GeoAI:融合AI的空间分析与处理;
2、AIforGIS:AI赋能GIS,即基于AI技术,增强和优化GIS软件功能;
3、GISforAI:GIS赋能AI,即基于GIS技术,将AI分析结果进行进一步处理分析与空间可视化展现。
图1AIGIS三部曲
GeoAI
基于统计学、机器学习和深度学习等人工智能基础理论与算法,面向地理空间领域问题,超图软件创新实现了一系列人工智能GIS功能,使其服务于GIS空间数据处理、分析、挖掘与综合建模。SuperMapGIS10i产品以丰富的空间统计功能为基础,主要在空间机器学习、空间深度学习两个方面深化与丰富GeoAI功能,支持人工智能GIS应用。
空间机器学习
机器学习是现阶段人工智能的研究核心,可以让计算机实现自动“学习”。机器学习领域的三类典型问题包括聚类、分类和回归,因此主要面向这三类基本问题展开空间机器学习的研究。
目前提供的空间机器学习算子包括空间热点分析、空间密度聚类、基于森林的分类与回归分析、广义线性回归分析,帮助解决商业热点区域探查、住宅小区集聚分析、动植物适生区域识别、自然灾害易发区推测、城市不同区域房价预测等自然与社会问题。为了支持空间大数据计算,还将机器学习算法与分布式计算进行有效结合,大幅度提升了空间机器学习的性能。
图2房产价格空间回归
空间深度学习
深度学习是机器学习技术的一个分支,可以让计算机模拟人脑的机制进行学习。由于深度学习技术在计算机视觉、图像理解方面已展现较好应用效果,因此,超图将其应用于遥感影像分析领域,可提高影像处理效率及准确性。SuperMapGIS10i新增了基于深度学习的影像数据检测、分类、提取等算法,包括目标检测、二元分类、地物分类和场景分类等,可用于影像建筑物、道路提取、土地利用分类、局部气候分区,可广泛应用于城市规划、气象建模等领域。
图3基于空间深度学习的影像建筑物提取
人工智能GIS流程工具
由于地理信息应用的多样性,当基础模型不能完全满足用户需求时,便可以用提供的流程工具来训练自己的模型。
机器学习的一般应用步骤是选择模型—训练模型—使用模型,因此相应的GeoAI功能使用需要经历从数据准备到模型应用的完整流程,如下图所示。而SuperMapGIS10i的组件、桌面、服务器产品分别都提供了支持数据准备、模型构建、模型应用的人工智能GIS工作流程工具,方便软件使用者根据自己的数据与应用场景训练和使用自有模型。
图4GeoAI工作流程
AIforGIS
AIforGIS,即基于AI技术增强和优化GIS软件功能。比如将AI技术应用到一些GIS传统业务中,实现GIS软件功能的智能进化。
目前SuperMap主要提供四个方面的功能:AI属性采集、AI测图、AI配图和AI交互。
AI属性采集功能可以帮助用户进行视频图像等多类目标的AI识别,例如高效采集违章停车、小广告、井盖等数据;AI测图功能提供更低成本、更为便捷的室内测图服务;AI配图功能为用户免去手工配图的繁琐流程,通过简单操作,进行风格迁移,就可以得到相对满意的地图风格;AI交互功能更是包括使用语音操控、隔空手势等丰富的交互方式,玩转GIS功能。
GISforAI
人工智能在不断发展的道路上,也需要不断吸收融合其他的技术,如GIS。GIS可以将更多空间可视化和空间分析能力赋予AI,将AI分析结果在GIS软件中进行进一步处理与分析。
GIS可以将空间可视化赋能AI,例如交通流量监控、城市管理部件与案件等地图可视化应用,可为决策者提供更直观的信息表达形式;GIS还可以将空间分析赋能AI,例如可进行地理围栏实时告警,车辆行驶路线追踪等,携手AI为用户提供更大价值。
AIGIS未来会怎样?
未来,超图软件会持续进行AI技术与GIS技术的深度融合,增加更多的方法和工具,基于AI技术促进GIS业务的深化应用。一方面,AIGIS会持续与深度学习、机器学习等方面的研究相结合,使其逐渐走向成熟;另一方面,AIGIS也会与AutoML、AIPaaS等为代表的AI新技术不断碰撞融合。随着人工智能技术不断蓬勃发展及与GIS的结合不断深入,未来的AIGIS也将从弱人工智能走向通用人工智能。我们将Gartner2019AI光环曲线中的研究方向划分为,AIGIS初步探索涉及的内容,以及AIGIS未来探索的内容两个部分。
图5AIGIS探索
注:原文标题《人工智能GIS技术体系来袭》,刊登于《超图通讯》2019年12月刊,作者:超图研究院大数据与AI研发中心郑美玲卢浩
人工智能AI对旅游业的影响有哪些
答:人工智能Al对旅游行业的影响有,1促进人工智能制定旅游方案2提升游客对人工智能科技的认知3人工智能安防4快速办签,5身份识别6人工智能云网传输7人工智能地质监测8美化旅游设施9减轻工人劳动力10精确气象监测11游客人员及安全监控12推进人工智能娱乐互动以促进旅游产业13发展人工智能家居14提升旅游知明度及宣传力度。
人工智能现在处于什么发展状态
最近阿里巴巴达摩院官网发布的2019年十大科技趋势,是基于现阶段人工智能发展现状和走势的一个综合概括,建议大家可以仔细品味下:
对于这十个趋势,来自包括中科院、清华大学、佛罗里达大学、杜克大学等权威学术机构的十余位专家就此发表评论,任务内达摩院发布的科技趋势虽然有十个方向,但都是围绕着当前科学发展的几个关键潮流,即以芯片为代表的算力、以图计算为代表的算法以及以5G为代表的连接能力。
一、计算是变革的源头
传统时代的计算始终在冯诺伊曼架构约束下发展,但人工智能的到来正在挑战冯诺依曼架构,而摩尔定律也接近失效,新型芯片以及新的计算机架构已经成为整个行业研究重心。达摩院认为,计算体系结构正在被重构,基于FPGA、ASIC等计算芯片的异构计算架构正在对以CPU为核心的通用计算发起冲击。
“通过推高通用芯片的性能来征服一切的方式已经失效。”中国科学院计算技术研究所研究员陈天石对此评论说,“学术界和工业界都把目光投向了更加专用的处理器架构,并且一直在期待新器件引发的新的架构演进。”
杜克大学副教授、IEEEFellow陈怡然也表示,目前学术界的研究重心在一些更为革命性的架构研究,例如内存计算、非冯诺依曼架构、神经形态计算等。而佛罗里达大学杰出教授、IEEEFellow李涛则指出,计算体系结构的变革将主导和引领ICT领域的持续创新和发展,这将是未来产业界的核心竞争力。
在人工智能领域,GPU无疑是最受企业以及开发者追捧的芯片。但达摩院认为,数据中心的AI训练场景下,计算和存储之间数据搬移已成为瓶颈,AI专用芯片将挑战GPU的绝对统治地位。
“对于训练场景来说,计算量要求非常高,需要存储和处理的数据量远远大于之前常见的应用,AI专用计算架构是最佳选择。”清华大学微纳电子系副系主任尹首一对达摩院的这一观点表示认可。
根据达摩院的判断,AI专用芯片的应用将成为趋势。在2018年的杭州云栖大会上,阿里巴巴曾宣布首款AI芯片AliNPU将于2019年应用于城市大脑和自动驾驶等云端数据场景中。陈天石指出,“AI芯片可以灵活高效地支持视觉、语音和自然语言处理,甚至传统的机器学习应用,将在数据中心场景发挥重要作用。”
二、算法的创新让AI更加智能
1950年,人工智能之父图灵提出著名的图灵测试用以检验人工智能能力,即如果有超过30%的测试者不能确定被测试者是人还是机器人,则认为是通过测试。
图灵提出的猜想可能将会很快实现。达摩院认为,在未来,人类可能无法辨别人工智能生成的语音和真人语音,具备语音交互能力的公共设施将会越来越多,甚至在一些特定对话测试中机器可以通过图灵测试。
西北工业大学计算机学院教授谢磊对此表示,“声音合成技术在某些方面已经可以媲美人声,并将会拉动‘耳朵经济’的爆发,各种‘AI声优’将上岗,为大家提供听觉盛宴。”
人工智能行业的迅速发展与深度学习带来的突破高度相关,但仅靠深度学习要实现通用人工智能仍然困难重重。达摩院认为,结合深度学习的图神经网络将让机器成为具备常识、具有理解、认知能力的AI。
杜克大学统计学院终身教授DavidDunson对此评论说,“结合了深度学习的图计算方法将实现推荐系统的变革性改进,为用户提供更有趣和更合适的产品,同时改善整体用户体验。”
过去两年,城市大脑成为社会热词。达摩院认为,2019年,人工智能将在城市大脑技术和应用的研发中发挥更大作用,未来越来越多的城市将拥有大脑。
中国城市规划设计院院长杨保军认为,“城市大脑将不再是单一领域或是单项要素的智慧,而是全局联动、多源交融的智慧。”同济大学智能交通运输系统研究中心主任杨晓光则表示,“新一代城市智能管理、智能服务与智能决策将帮助人类最大程度地预防和综合治理城市病。”
三、连接万物的5G催生更多应用场景
过去几年,5G的热度并不逊于人工智能。5G构建的不仅是一张人联网,它将会成为连接万物的纽带。
达摩院在此次十大科技趋势中提到,5G将催生超高清视频、AR/VR等场景的成熟。中国信通院副总工、工信部信息通信经济专家委员会秘书长陈金桥对此评论说,“5G将掀开数据资源作为生产力的大幕,一个基于泛在高速连接的智能社会必将形成。”
车路协同将会是5G与人工智能两大技术交融的典型场景。达摩院认为,车路协同技术路线会加快无人驾驶的到来,并且将在固定线路公交、无人配送、园区微循环等商用场景将快速落地。
单纯依靠“单车智能”的方式革新汽车存在诸多限制,例如传感器部署的成本高,感知系统以及决策系统的可靠性低等。“车路协同的优势在于,可降低单车系统在定位方案部署上的成本,并且可以实现更好的感知与决策。”中科院自动化研究所研究员赵冬斌如此表示。
人工智能,最快落地的是哪个行业
看这个问题需要一个逻辑,一定是数据多、好标准化、需要感知、认知多的行业,并且政策监管不严的行业:
1.安防:AI可以很好的识别出个人、人流量、车牌等特征,一个大脑顶无数警察、监管人员。并且有政策扶持,中国的“天网”计划要部署1亿个智能摄像头。
2.无人驾驶:这个场景非常之大,以至于最近的风险投资将很多钱投向这个领域。可以应用在无人驾驶系统、识别人的情况精准推荐服务和调整温度座椅、完全无人驾驶到来之前的司机状态监控。无人驾驶真正全面普及还需要时间,但垂直领域有很多机会,比如园区、旅游区等。
3.金融:有大量数据,也好标准化。1)可以用在智能投顾,帮助顾客理财;2)营销,根据消费习惯推荐不同的金融服务和分期、办卡;3)风险控制,通过银行数据和网络公开数据,比较精准的刻画出客户偿还能力减少风险。
4.医学:1)医学影像方面,可以快速帮医生看出癌症等细小的病变,能够提早发现,比医生更快速看片子;也可以通过摄像头、心率传感器等检测或看出人的问题;2)语音识别帮助医生记病历,现在医生记病历花了大量时间;3)导医机器人,引导就诊者查看挂号、科室等信息。
5.智能手机&IOT设备:手机的拍照、摄影,解决系统的卡顿,处理器等都已经用到AI;IOT设备中的智能音箱、陪伴机器人、服务机器人、扫地机器人、家庭智能摄像头等等等。
6.智能芯片:有这么多硬件,服务需要AI化,一定需要更匹配的AI芯片,无论是终端层面,还是云服务中。
其他:看到有回答提到工业,工业也是一个很大的场景,但有几个原因导致短期很难普及:中国大多工厂话还没有自动化和数据化,无法让AI发力;工业产品非标品复杂,而标品AI短期很难超过自动化;设备的精准度等也需要保证。但在部分环节,比如检验残次品已经可以适应。
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件