边缘计算将如何影响人工智能
首先回答什么是边缘计算。
什么是边缘计算?根据边缘计算联盟(ECC)2017年11月发布的版边缘计算参考架构2.0,对边缘计算的定义如下:
边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。它可以作为联接物理和数字世界的桥梁,使能智能资产、智能网关、智能系统和智能服务。边缘计算的特点:
1、联接性。
联接性是边缘计算的基础。所连接物理对象的多样性及应用场景的多样性,需要边缘计算具备丰富的联接功能,如各种网络接口,网络协议、网络拓扑、网络部署和配置、网络管理与维护。联接性需要充分借鉴吸收网络领域先进的研究成果,如TSN、SDN、NFV、NetworkasaService、WLAN、NB-IOT、5G等,同时还要考虑与现有各种工业总线的互联互通。
2、数据第一入口。
边缘计算作为物理世界到数字世界的桥梁,是数据的第一入口,拥有大量、实时、完整的数据,可基于数据全生命周期进行管理与价值创造,将更好的支撑预测性维护,资产效率与管理等创新应用;同时,作为数据第一入口,边缘计算也面临数据实时性、确定性、多样性等挑战。
3、约束性。
边缘计算产品需适配工业现场相对恶劣的工作条件与运行环境,如防电磁、防尘、防爆、抗振动,抗电流/电压波动等。在工业互联场景下,对边缘计算设备的功耗、成本、空间也有较高的要求。
边缘计算产品需要考虑通过软硬件集成与优化,以适配各种条件约束,支撑行业数字化多样性场景。
4、分布性。
边缘计算实际部署天然具备分布式特征。这要求边缘计算支持分布式计算与存储,实现分布式资源的动态调度与统一管理、支撑分布式智能、具备分布式安全等能力。
5、融合性。
OT与ICT的融合是行业数字化转型的重要基础。边缘计算作为OICT融合与协同的关键承载,需要支持在联接、数据、管理、控制、应用、安全等方面的协同。
什么是人工智能?人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。根据智能水平,大体可以分为:
1、弱人工智能(ArtificialNarrowIntelligence):使用人设定的算法和模型,擅长于完成单个方面任务的人工智能。
“机器只不过看起来像是智能的,但是并不真正拥有智能,也不会有自主意识。”
2、强人工智能(ArtificialGeneralIntelligence):在各方面都能和人类比肩的人工智能,可以替代人的脑力劳动。
“计算机不仅是用来研究人的思维的一种工具,相反,只要运行适当的程序,计算机本身就是有思维的。”
3、超人工智能(ArtificialSuperintelligence):“在几乎所有领域都比人类大脑都聪明很多,包括科学创新、通识和社交技能。”——NickBostrom
人工智能革命是从弱人工智能,通过强人工智能,最终达到超人工智能的旅途,现在,人类已经掌握了弱人工智能。
人工智能的发展历史
当代人工智能
1、深度学习推动人工智能迈上新台阶
2006年,Hinton教授提出“深度学习”神经网络使得人工智能性能获得突破性进展,进而促使人工智能产业又一次进入快速发展阶段。
深度学习提出了一种让计算机自动学习出模式特征的方法,并将特征学习融入到了建立模型的过程中,从而减少了人为设计特征造成的不完备性。
2、计算成本指数级下降,GPU加速发展为深度学习奠定计算基础
“当价格不变时,集成电路上可容纳的晶体管数目约每隔18个月便会增加一倍,性能也将提升一倍。”——摩尔定律
计算成本的极速下降也为人工智能加速发展提供可能,GPU已经成为业界在深度学习模型训练方面的首选解决方案。。
“当1000美元能买到人脑级别的1亿亿运算能力的时候,强人工智能可能成为生活中的一部分。”——Kurzweil
3、数据量爆炸,为人工智能奠定数据基础
人工智能是利用机器算法模拟人脑对历史知识学习、吸收与理解并掌握运用的训练过程。
数据量的丰富程度决定了是否有充足数据对模型进行训练,进而使人工智能系统经过深度学习训练后达到强人工智能水平。
4、资本层加速爆发,推动人工智能产业发展
5、科技巨头在人工智能领域的布局始终领先。
6、未来人工智能应用于无人驾驶汽车、辅助诊断、刑侦监测等领域将会产生巨大的商业价值和社会价值,资本层面的爆发将持续带动人工智能行业加速爆发。
边缘计算如何影响人工智能(以下摘自边缘计算白皮书)边缘计算使能行业智能。
面对行业智能的挑战,边缘计算提供四个关键能力:
1、建立物理世界和数字世界的联接与互动。
通过数字孪生,在数字世界建立起对多样协议、海量设备和跨系统的物理资产的实时映像,了解事物或系统的状态,应对变化、改进操作和增加价值。
2、模型驱动的智能分布式架构与平台。
在网络边缘侧的智能分布式架构与平台上,通过知识模型驱动智能化能力,实现了物自主化和协作化。
3、提供开发与部署运营的服务框架。
开发服务框架主要包括方案的开发、集成、验证和发布;部署运营服务框架主要包括方案的业务编排、 应用部署和应用市场。开发服务框架和部署运营服务框架需要紧密协同、无缝运作,支持方案快速高效开 发、自动部署和集中运营。
4、边缘计算与云计算的协同。
边缘侧需要支持多种网络接口、协议与拓扑,业务实时处理与确定性时延,数据处理与分析,分布式智 能和安全与隐私保护。云端难以满足上述要求,需要边缘计算与云计算在网络、业务、应用和智能方面进行 协同
人工智能未来的发展趋势有哪些
谢谢邀请。
现如今,人工智能发展壮大的脚步正在加快。从人工智能机器人与人类的围棋大战获胜,到大型科技公司对人工智能的频频出招,人工智能的大爆发已经不再是一个预言,这是一个巨大的产业,也给人们带来了从未有过的体验。
有关于人工智能化机器人的发展方向,专家学者们都有不同的解读,大致可以看到如下几种。
在工厂里,将来的机器人更加智能和自动化,目前的机器人大部分是在人类的操纵之下,能够完全简单的生产任务。未来的机器人能够准确识别语言指令,并能够通过语言与人交流,同时也能够不断地被训练,能够独立完成更为复杂的工作任务。
在日常工作生活中,智能助理型机器人将渐渐占据主流。除了能够提醒用户重要事件之外,它还能记录下用户的个人的爱好,并据此提出一些交往建议。此外,还可以通过它控制用户家里的所有互联网设备等,当然日常的语言交流与音乐推荐等众多的生活细节功能也将会不断被开发出来。
未来的智能机器人技术,不可能停留在综合归纳数据并处理简单指令的层面上,一些公司正在开始研究能够理解用户情感的人工智能技术,它能够通过更类似于人的行为来判断用户的需要。
人工智能机器人的未来会更加人性化,但是想要完全取代人的思维,产生自我意识,现在看来还不可能。
科学是人类社会进步的催化剂,知识的增加伴随着是未知领域的增加。人工智能的出现,必将取代相当一部分人的工作,但是对于社会来说,人工智能是有益的。至于人工智能最终会达到哪种聪明程度,我们只能拭目以待。
电缆防爆井盖做法
首先盖板制作龄期达到7天以上,在混凝土强度达到设计强度的75%以上时,进行盖板起吊码堆和运输,起吊的盖板堆放到预制厂旁边的堆放场,待涵台砼强度达到设计强度的75%时可以进行盖板安装,盖板通过汽车运到施工现场,用汽车吊安装,然后用吊车配合人工安装到位。在盖板安装前先修筑好运输便道,台背两侧进行回填,为吊装工作做好必要的准备。?
1、安装盖板前,应先在台帽上铺一层1cm厚的底浆找平,然后再铺设一层1cm厚的油毛毡;?
2、提前标出盖板的放置位置;?
3、安装时,要注意与下部的沉降缝的对应,以及板端支护长度;?
4、安装结束后,进行板位的精确调整,调整到位后,用小石子顶紧,再用M10水泥砂浆填充台背与盖板间的空隙。
5、盖板构件的尺寸和偏差要求?
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件