人工智能的核心领域是什么(人工智能的核心领域是什么意思)

日期: 浏览:3

人脸识别系统的核心是什么

人脸识别解决方案,是基于华科智能算法进行操作,让设备能够一边读取来访人证件上的信息的同时,一边采集人脸,进行对比,确认,从而让人通行。与传统方式相比更准确、高效,给人生活带来方便,使得人脸识别系统越来越广泛。

为什么说自然语言处理是人工智能的核心

什么是自然语言处理?就是对一个词或是几段话进行处理,从而做到一种“理解”。

为什么说自然语言处理是人工智能的核心呢?最根本的原因在于——自然语言处理是语音交互的关键,是体现“智能”的核心。细细讲来,主要有两个原因:

首先,语音交互是当前最为主流的人机交互途径。

语音助理、智能音箱、智能机器人、语音搜索……我们可以清楚地感受到,语音交互已然成为了智能时代人机交互的主流途径。

什么是交互?简单来讲就是基于一句话一件事的理解,两个人之间言语的往来。既然说到理解,那就不是由简简单单的语音识别就能够应付得了的,而是涉及到了“自然语言处理”,对识别出来的话进行断句并联系上下文进行理解。如此这般,让人工智能跟人类一样“理解”语句,才能准确理解用户下达的指令,从而准确的执行任务,实现一个顺畅的语音交互过程。

其次,自然语言处理是体现人工智能“智能”的关键。

此前,“人工智能之父”马文·明斯基曾表示人工智能领域最终要解决的技术难题就是“语义分析”。图灵机器人联合创始人兼COO郭家也说过,人脑是让人类拥有无限智慧的原因,是真正体现“智能”的一个表现。

当前,人工智能更多的还是在“学习”人类,对于其“智能”的表现,我们现在更多的是看其在与人类的交互中是否能真正做到既准确又自然。这个的实现,就需要做到“理解”,也就是自然语言理解。

更多优质回答,请持续关注镁客网头条号~

人工智能需要哪些高级的数学知识

人工智能和数学领域有着非常密切的联系,让我们来进行论述和探讨。

一、数学与人工智能

人工智能是一个交叉学科,应用的领域也非常广阔。不同的应用领域所要求的数学背景知识也不尽相同。但是线性代数、概率论、微积分和统计学是人工智能用于表述的“语言”。学习数学知识将有助于深入理解底层算法机制,便于开发新算法。

线性代数是描述深度学习算法的基础也是核心。它通过矩阵表示法来实现深度学习方法,将待处理的非结构化数据都转换成离散的矩阵或向量形式。比如一张图像可以表示为按顺序排列的像素数组形式,声音数据可以表示为向量形式,神经网络就是无数的矩阵运算和非线性变换的结合。大家都知道,概率论与统计学可以用来研究数据分布与如何处理数据。深度学习算法所做的绝大多数事情就是预测,预测源于不确定性,而概率论与统计就是讨论不确定性的学科。另外,微积分是数学分析的基础。

二、AI在数学界的作用

人工智能最大的优势,在于可以帮助人们寻找出人类思维不易发现的联系,也就是帮助人类寻找“直觉”。现在的AI,已经可以通过一定的算法,分析大量数据间存在的关系以及规律,从而帮助发现一些新的猜想。一旦在AI的帮助下找到新的猜想,接下来数学家们就要对这些新猜想,进行深层次地推演和证明。那些被证明为“真”的猜想,最终将会作为定理为人类直接应用。目前,AI已经可以提供一个强大的框架,在有大量数据或难以利用经典方法研究的数学领域中,发现了不少有趣且可以获得论证的猜想。

数学在人工智能领域中发挥着重要的作用。如神经网络中的所有参数都被存储在矩阵中;线性代数使矩阵运算变得更加快捷简便,尤其是在GPU上训练模型时,因为GPU可以并行地以向量和矩阵运算。图像在计算中被表示为按序排列的像素数组。视频游戏使用庞大的矩阵来产生令人炫目的游戏体验。在机器翻译中,如何检测你输入的语言种类会用到概率论的相关知识。一种简单的方法就是把你输入的词或句子进行分解,计算各语言模型的概率,然后概率最高的是最后确定的语言模型。另外,用神经网络进行图像分类,网络的输出是衡量分类结果可信程度的概率值,即分类的置信度,我们选择置信度最高的作为图像分类结果。而混合高斯模型、隐马尔科夫模型等传统语音处理模型都是以概率论为基础的。

三、AI未来对数学界产生的颠覆性影响

就像计算机对于数学的发展造成了一系列影响,不同程度的“人工智能”在当下已经与数学有所交融,在未来也可能以各种方式起到颠覆性的作用。如能够将简单重复的计算工作交给计算机,使得“数值解”成为“解析解”的一大补充,也使一部分解析表达式(例如级数)在理论分析之外有了更多的应用。

由于强大算力的介入,以迭代、大规模计算等等为基础的算法不再仅存在于理论之中,而是在优化、求解等方面有了更大的实用价值。这从思维方式上改变了数学的研究,不仅提供了更多的工具来解决问题,也丰富了计算数学等领域的研究内容。

人工智能的介入使得“将简单重复的推理和验证工作交给计算机”成为可能。即使是这些非常弱意义下的“人工智能”也能够进一步改变数学研究的方式。例如通过人工推导限制讨论的情况数目,再通过机器逐一验证来完成证明。

一方面,人工智能为我们提供了便利。另一方面,人工智能也可以通过数据来学习和了解人类。人工智能浪潮催生了一批以人工智能算法为驱动的互联网公司。我们身处一个巨变的时代,毋庸置疑,人工智能已经成为科技前沿之一,将给许多行业带来颠覆性的影响。基于数据的人工智能和基于模型的数学方法,两者有机结合,既能推动人工智能的进步,也促进了数学研究的创新。随着“人工智能”的能力提升和应用推广,其他领域的数学研究也会获得一定的帮助,甚至在新工具的帮助下取得前所未有的成果。例如一些将讨论情况数目限制到小范围或者积累成果已经足够丰富的猜想,其证明可以通过机器来打通最后一步。

综上所述,AI在数学界有着举足轻重的地位,很多人工智能应用都需要数学的相关知识来支撑。同时,AI也会在未来会对数学界产生深远和颠覆性的影响。

本文分享自华为云社区《【云驻共创】AI在数学界有哪些作用?未来对数学界会有哪些颠覆性影响?》,作者:龙腾九州。

人工智能的基础设施是什么

虽说人工智能不能等同于深度学习,但是机器学习,尤其深度学习无疑是近年来人工智能领域大放异彩的一个分支。机器学习对人工智能最大的贡献恐怕就是数据驱动,这也是为什么只有到了互联网时代,机器学习的崛起才成为可能。因此广义的讲,可以说机器学习的基础设施就是互联网。互联网从几个方面支撑了机器学习的崛起。

首先是原始数据的积累,互联网时代人类生产的文字,图片,视频各种媒介构成了一个巨大的数字化世界。这些内容天然就是现实世界的某种映像。人工智能想要理解现实世界,不妨从数字映像入手。在互联网上,一个高效的爬虫可以轻松游遍古今中外,看尽世间繁华。

有了这些内容还不够,要想教会机器理解他们,还需要有好的老师进行教导。有趣的是互联网还产生着第二种数据,人的行为。行为数据比内容更多,当行为数据达到一定量的时候,机器就能从中学到人是如何理解这些内容的。当然事实并没有那么简单,行为数据有大量噪声,需要清洗,否则很容易让机器迷惑。解决噪声的问题一靠数据多,二就靠清洗了。对于很多任务,高质量的标注数据集都是必不可少的。

如此就催生出来另一个重要的基础设施,众包平台。现阶段机器的学习能力还远不如人类,常常做不到触类旁通。因此每一个特定的任务,都依赖高质量的训练数据。通过众包平台产生大量的标注数据集,才使得人工智能变得可能。尽管大家也在研究怎样让机器在有噪声的数据上尽可能的找到规律,但对于很多任务来说,能够最快最稳定提升效果的办法,都是提供更多更好的数据。众包平台提供一种工具,让人能够方便的筛选出有用的数据,给数据打上标签。这后面还可能牵涉到如何评估标注结果,如何定价,如何防止作弊。

互联网作为人工智能最重要的基础设施,主要承担了提供数据的功能。有了数据就该计算平台登场了。现如今深度学习纵横四海的年代,速度可能是除了数据第二重要的东西了。GPU,以及运行在之上CUDA,cuDNN,大大加快了训练速度。这在数据驱动的逻辑下就不得了。因为一般人对高维数据已经无法很直观的理解了,模型好不好就全凭各种实验。计算速度的优势不仅影响模型的效率,同时使得你能在同样的时间内做更多的实验,迭代调参,挑选出最好的一个。这里面最核心的问题是如何加速矩阵运算。

深度学习是一门实验科学,但是实验不仅仅是计算,还需要人去调整网络结构,分析各种中间结果等等。因此在计算平台的基础之上,又出现了Caffe,Mxnet,Tensorflow等深度学习框架。他们的主要作用是简化开发流程,加速实验的迭代。这部分基础设施最重要的功能就提供了高层接口,使大家不用去关心计算平台的特性。并且他们都提供了SGD等常见的优化方法,使得大家可以专注于网络和损失函数的设计。

推荐阅读
美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件
人工智能的核心领域是什么(人工智能的核心领域是什么意思)文档下载: PDF DOC TXT