一、人工智能中常见的4种研究方法
1、目前对人工智能的界定主要分为四类:像人一样思考(thinkinghumanly);像人一样行为(actinghu-manly);理性思考(thinkingrationally);理性行为(actingrationally)。
2、其中前两类从与人类表现的逼真度的维度出发,后两类从合理性的、理想的表现量的维度出发。
二、人工智能的研究意义
1、对于人工智能的研究,可以帮助我们找准人类对于自身的定位。就目前来说,人类是地球上最高形态的智慧存在,但对于整个宇宙来说,其实是不确定的,相对于未来未知的情况,就更加不确定。
2、人类在研究人工智能时,总是希望研究的目的成为最终的结果。从而达到对自己有利的目的。而事物的发展也不总是如我们自己所愿。从整个生命进化来看,人类并不一定是生命进化的最终形态。
3、如果这一点成立,那么我们研究人工智能,很可能就是告诉我们人类不要狂妄自大,人这样一种生命存在的形态,并非是生命进化的终极层次。
三、人工智能的四个研究途径
1、演绎、推理和解决问题早期的人工智能研究人员直接模仿人类进行逐步的推理,就像是玩棋盘游戏或进行逻辑推理时人类的思考模式。到了1980和1990年代,利用机率和经济学上的概念,人工智能研究还发展了非常成功的方法处理不确定或不完整的资讯。
2、对于困难的问题,有可能需要大量的运算资源,也就是发生了“可能组合爆增”:当问题超过一定的规模时,电脑会需要天文数量级的记忆体或是运算时间。寻找更有效的算法是优先的人工智能研究项目。
四、人工智能的主要研究方法的区别
由于研究者的专业和研究领域的不同以及他们对智能本质的理解有异,因而形成了不同的人工智能学派,各自采用不同的研究方法。与符号主义、联结主义和行为主义相应的人工智能研究方法为功能模拟法、结构模拟法和行为模拟法。此外,还有综合这3种模拟方法的集成模拟法。
符号主义学派也可称为功能模拟学派。他们认为:智能活动的理论基础是物理符号系统,认知的基元是符号,认知过程是符号模式的操作处理过程。功能模拟法是人工智能最早和应用最广泛的研究方法。功能模拟法以符号处理为核心对人脑功能进行模拟。本方法根据人脑的心理模型,把问题或知识表示为某种逻辑结构,运用符号演算,实现表示、推理和学习等功能,从宏观上模拟人脑思维,实现人工智能功能。
功能模拟法已取得许多重要的研究成果,如定理证明、自动推理、专家系统、自动程序设计和机器博弈等。功能模拟法一般采用显示知识库和推理机来处理问题,因而它能够模拟人脑的逻辑思维,便于实现人脑的高级认知功能。
功能模拟法虽能模拟人脑的高级智能,但也存在不足之处。在用符号表示知识的念时,其有效性很大程度上取决于符号表示的正确性和准确性。当把这些知识概念转换成推理机构能够处理的符号时,将可能丢失一些重要信息。此外,功能模拟难于对含有噪声的信息、不确定性信息和不完全性信息进行处理。这些情况表明,单一使用符号主义的功能模拟法是不可能解决人工智能的所有问题的。
联结主义学派也可称为结构模拟学派。他们认为:思维的基元不是符号而是神经元,认知过程也不是符号处理过程。他们提出对人脑从结构上进行模拟,即根据人脑的生理结构和工作机理来模拟人脑的智能,属于非符号处理范畴。由于大脑的生理结构和工作机理还远未搞清,因而现在只能对人脑的局部进行模拟或进行近似模拟。
人脑是由极其大量的神经细胞构成的神经网络。结构模拟法通过人脑神经网络、神经元之间的连接以及在神经元间的并行处理,实现对人脑智能的模拟。与功能模拟法不同,结构模拟法是基于人脑的生理模型,通过数值计算从微观上模拟人脑,实现人工智能。本方法通过对神经网络的训练进行学习,获得知识并用于解决问题。结构模拟法已在模式识别和图像信息压缩领域获得成功应用。结构模拟法也有缺点,它不适合模拟人的逻辑思维过程,而且受大规模人工神经网络制造的制约,尚不能满足人脑完全模拟的要求。
行为主义学派也可称为行为模拟学派。他们认为:智能不取决于符号和神经元,而取决于感知和行动,提出智能行为的“感知——动作”模式。结构模拟法认为智能不需要知识、不需要表示、不需推理;人工智能可能可以像人类智能一样逐步进化;智能行为只能在现实世界中与周围环境交互作用而表现出来。
智能行为的“感知——动作”模式并不是一种新思想,它是模拟自动控制过程的有效方法,如自适应、自寻优、自学习、自组织等。现在,把这个方法用于模拟智能行为。行为主义的祖先应该是维纳和他的控制论,而布鲁克斯的六足行走机器虫只不过是一件行为模拟法(即控制进化方法)研究人工智能的代表作,为人工智能研究开辟了一条新的途径。
尽管行为主义受到广泛关注,但布鲁克师的机器虫模拟的只是低层智能行为,并不能导致高级智能控制行为,也不可能使智能机器从昆虫智能进化到人类智能。不过,行为主义学派的兴起表明了控制论和系统工程的思想将会进一步影响人工智能的研究和发展。
上述3种人工智能的研究方法各有长短,既有擅长的处理能力,又有一定的局限性。仔细学习和研究各个学派思想和研究方法之后,不难发现,各种模拟方法可以取长补短,实现优势互补。过去在激烈争论时期,那种企图完全否定对方而以一家的主义和方法主宰人工智能世界的氛围,正被互相学习、优势互补、集成模拟、合作共赢、和谐发展的新氛围所代替。
采用集成模拟方法研究人工智能,一方面各学派密切合作,取长补短,可把一种方法无法解决的问题转化为另一方法能够解决的问题;另一方面,逐步建立统一的人工智能理论体系和方法论,在一个统一系统中集成了逻辑思维、形象思维和进化思想,创造人工智能更先进的研究方法。要完成这个任务,任重而道远。
五、人工智能的主要研究和应用场景包括推理(
1、人工智能的研究领域和应用领域分别有:
2、自然语言处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法
3、智能控制,机器人学,语言和图像理解,遗传编程
推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件