目前来说,人工智能是不是以后的发展方向
人工智能分广义和狭义之分,广义是指新兴的AIOT,即利用人工智能、物联网、大数据、区块链以及5G技术把万事万物互联互通,通过机器学习把人类体力劳动和脑力劳动中解放出来。
人工智能狭义是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
人工智能的发展前景
一个来自时代弄潮儿的观察:应该是第三次工业革命~信息时代的延续与深化。信息时代第一阶段,是电脑的普及,一切数字化,几乎人类所有活动都需要计算机的辅助来完成,极大的提高了人类自身的效率;信息时代的第二个阶段是互联网,就是电脑普及后的继续深化,互联网化,向所有行业渗透,用互联网来改造一切行业,包括生产环节的前后端连接,从供给到需求端。包括资源要素的共享,互通有无。极大的提供了社会运行的效率;信息时代的第三个阶段应该是智能时代。基于物联网与大数据的支撑,以及通讯技术的进步,在互联网基础上,逐渐发展到物联网。物联网是万物相连,不单单是电脑的相互连接,是各种智能化的物理终端连接。连接靠的是互联网,尤其是无线通讯技术的支撑,大数据的快速传递不再是问题。大数据哪里来就是基于前面大量互联网化的积累,以及物联网后的本身不断自我积累;智能是什么?就是大数据加上算法!
人工智能科普讲座的意义
人工智能(AI)科普讲座的意义在于:
让公众了解人工智能的最新进展和应用,提高公众对人工智能的认知。
鼓励公众参与人工智能的研发和应用,促进人工智能的普及和发展。
引导公众理性使用人工智能,避免人工智能的滥用。
人工智能是当今世界最热门的科技领域之一,它正在深刻地改变着我们的生活。人工智能科普讲座可以帮助公众了解人工智能的最新进展和应用,提高公众对人工智能的认知。这对于促进人工智能的普及和发展具有重要意义。
人工智能科普讲座还可以鼓励公众参与人工智能的研发和应用。人工智能是技术密集型行业,需要大量的人才。人工智能科普讲座可以激发公众对人工智能的兴趣,吸引更多的人才投入到人工智能的研发和应用。
最后,人工智能科普讲座可以引导公众理性使用人工智能。人工智能是一把双刃剑,它可以带来好处,也可以带来危害。人工智能科普讲座可以帮助公众了解人工智能的潜在风险,避免人工智能的滥用。
总之,人工智能科普讲座具有重要意义。它可以帮助公众了解人工智能的最新进展和应用,提高公众对人工智能的认知,鼓励公众参与人工智能的研发和应用,引导公众理性使用人工智能。
人工智能如何让其有思维
培养和提升“编程思维”可充分利用一些思维导图工具,它们能帮助我们建立结构化的思考方式、快速的梳理流程、找到一些问题的关键节点,并同时注意归类、分解、总结,这些习惯有利于“编程思维”的养成。
学习编程是一种最好的培养“编程思维”的方式,但对于孩子而言纯代码编程难免会有点晦涩难懂,每个孩子的基础又不一而足。且现阶段虽我国在大力普及人工智能与编程教育,不少地区都设置了人工智能与编程教育的课程,但多以生活相关事物为引,讲解编程概念与应用知识,并辅体验式教学手段,通过游戏化、项目式教学模式,借助积木式编程工具,对对象、模块、控制、执行等概念予以直观体验,以此来感受“编程思维”。
初学者应该如何从零开始学习人工智能
此文是想要进入人工智能这个领域、但不知道从哪里开始的初学者最佳的学习资源列表。机器学习
有关机器学习领域的最佳介绍,请观看Coursera的AndrewNg机器学习课程。它解释了基本概念,并让你很好地理解最重要的算法。
有关ML算法的简要概述,查看这个TutsPlus课程“MachineLearningDistilled”。
“ProgrammingCollectiveIntelligence”这本书是一个很好的资源,可以学习ML算法在Python中的实际实现。它需要你通过许多实践项目,涵盖所有必要的基础。
这些不错的资源你可能也感兴趣:
PererNorvig的UdacityCourseonML(MLUdacity课程)
TomMitchell在卡梅隆大学教授的AnothercourseonML(另一门ML课程)
YouTube上的机器学习教程mathematicalmonk
深度学习关于深度学习的最佳介绍,我遇到最好的是DeepLearningWithPython。它不会深入到困难的数学,也没有一个超长列表的先决条件,而是描述了一个简单的方法开始DL,解释如何快速开始构建并学习实践上的一切。它解释了最先进的工具(Keras,TensorFlow),并带你通过几个实际项目,解释如何在所有最好的DL应用程序中实现最先进的结果。
在Google上也有一个greatintroductoryDLcourse,还有SephenWelch的greatexplanationofneuralnetworks。
之后,为了更深入地了解,这里还有一些有趣的资源:
GeoffreyHinton的coursera课程“NeuralNetworksforMachineLearning”。这门课程会带你了解ANN的经典问题——MNIST字符识别的过程,并将深入解释一切。
MITDeepLearning(深度学习)一书。
UFLDLtutorialbyStanford(斯坦福的UFLDL教程)
deeplearning.net教程
MichaelNielsen的NeuralNetworksandDeepLearning(神经网络和深度学习)一书
SimonO.Haykin的NeuralNetworksandLearningMachines(神经网络和机器学习)一书
人工智能“ArtificialIntelligence:AModernApproach(AIMA)”(人工智能:现代方法)是关于“守旧派”AI最好的一本书籍。这本书总体概述了人工智能领域,并解释了你需要了解的所有基本概念。
来自加州大学伯克利分校的ArtificialIntelligencecourse(人工智能课程)是一系列优秀的视频讲座,通过一种非常有趣的实践项目(训练AI玩Pacman游戏)来解释基本知识。我推荐在视频的同时可以一起阅读AIMA,因为它是基于这本书,并从不同的角度解释了很多类似的概念,使他们更容易理解。它的讲解相对较深,对初学者来说是非常不错的资源。
大脑如何工作
如果你对人工智能感兴趣,你可能很想知道人的大脑是怎么工作的,下面的几本书会通过直观有趣的方式来解释最好的现代理论。
JeffHawkins的OnIntelligence(有声读物)
G?del,Escher,Bach
我建议通过这两本书入门,它们能很好地向你解释大脑工作的一般理论。
其他资源:
RayKurzweil的HowtoCreateaMind(如何创建一个头脑RayKurzweil)(有声读物)。
PrinciplesofNeuralScience(神经科学原理)是我能找到的最好的书,深入NS。它谈论的是核心科学,神经解剖等。非常有趣,但也很长–我还在读它。数学以下是你开始学习AI需要了解的非常基本的数学概念:
微积分学
KhanAcademyCalculusvideos(可汗学院微积分视频)
MITlecturesonMultivariableCalculus(MIT关于多变量微积分的讲座)
线性代数
KhanAcademyLinearAlgebravideos(可汗学院线性代数视频)
MITlinearalgebravideosbyGilbertStrang(GilbertStrang的MIT线性代数视频)
CodingtheMatrix?(编码矩阵)–布朗大学线程代数CS课程
概率和统计
可汗学院Probability(概率)与Statistics(统计)视频
edxprobabilitycourse(edx概率课程)
计算机科学要掌握AI,你要熟悉计算机科学和编程。
如果你刚刚开始,我建议阅读DiveIntoPython3(深入Python3)这本书,你在Python编程中所需要的大部分知识都会提到。
要更深入地了解计算机编程的本质–看这个经典的MITcourse(MIT课程)。这是一门关于lisp和计算机科学的基础的课程,基于CS-结构和计算机程序的解释中最有影响力的书之一。
其他资源Metacademy?–是你知识的“包管理器”。你可以使用这个伟大的工具来了解你需要学习不同的ML主题的所有先决条件。
kaggle?–机器学习平台
以上就是我的观点,对于这个问题大家是怎么看待的呢?欢迎在下方评论区交流~我是科技领域创作者,十年互联网从业经验,欢迎关注我了解更多科技知识! 推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件