人工智能的所学方向和基本领域是什么
用高科技技术取代人工领域的分工和作业
零基础如何入门人工智能
我是年初才开始学习人工智能的,这块有很多的知识需要学习,学习方式有两种:
1.书本学习买2-4本关于人工智能的书籍,以其中的一本为主线,其他的书为参考进行学习,选择书的时候一定注意侧重点,0基础的学习一定要适合自己看懂的书,也就是看书的时候要能提高兴趣;等入门后,再看有难度的书;
给大家推荐几本书,我觉得入门看比较合适:
2.网络学习这种学习方式不论是网页还是视频都是比较直观,对问题的求解方面来说更加的精准;网页学习适合有一定基础的,而视频学习适合各种层面的需求者;
如果网络视频学习,可以在头条里搜索,或是去腾讯课堂,那里有很多的视频教程,都是很实用的;
人工智能是一门新的学科,它是计算机学科的延伸,所以,如果仅是入门,了解一些我们日常的人工智能,比如语音识别、图像识别、导航定位等以及他们延伸出来的一些算法。
现在怎么着手学习人工智能呢
这是一个非常好的问题,也是很多人比较关心的问题之一,作为一名教育工作者,我来回答一下。
当前人工智能是一个热点领域,随着人工智能技术逐渐走进产业领域,未来大量的职场人都需要掌握一定的人工智能技术,而由于人工智能技术本身的知识量比较大,而且难度也相对比较高,所以很多人在学习人工智能技术的时候,往往不知道该从哪入手。
从技术体系结构上来看,当前对于初学者来说,学习人工智能技术可以从机器学习开始入手,然后根据自身的发展规划和岗位任务需要,来选择下一步的学习计划。当然,由于人工智能技术的学习需要一定的场景支撑,所以学习人工智能技术应该尽量为自己营造一个较好的学习和实践场景。
学习机器学习需要有一定的操作系统基础、数学基础和编程基础,如果没有掌握编程语言,需要先从编程语言开始学起,比如从Python开始学起就是一个比较不错的选择。在掌握了基础的Python编程知识之后,下一步就可以采用Python语言来完成一些简单的算法实现,进而完成算法训练、算法验证和算法应用等步骤。
随着当前各大科技公司纷纷开放自身的人工智能平台,未来行业领域会有大量的智能化创新会基于这些人工智能平台来展开,所以掌握人工智能平台也会有很多的就业机会。目前人工智能平台往往都以自然语言处理和计算机视觉为基础来进行构建,所以可以结合自身的岗位任务来选择学习的切入点。
最后,学习人工智能技术一定要重视与技术专家的交流,交流的过程也是学习的过程。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
应该怎样一步步地学习人工智能谁有成功的经验可以分享
人工智能本质就是使用机器学习算法,通过数据挖掘来训练出最优的算法模型,然后逐渐应用到人们的日常生活中,提升人们的生产效率,我读研的时候就是数据挖掘专业,这里分享一下我当初学习机器学习算法的经验。
可以先从机器学习实战和统计学习方法这两本书入手,先初步了解机器学习应用点新手刚开始学习机器学习算法,建议可以先看《机器学习实战》这本书,这本书讲解了机器学习一些基础算法,同时将算法应用到一些比较简单的场景,算法核心思想通过python语言去实现了部分算法,新人在入门机器算法时,肯定还是希望能够结合代码来理解算法的核心思想,这样以后使用算法时,也能快速编写出来。
《统计学习方法》这本书就是纯讲基础机器学习算法的理论了,SVM、线性回归、决策树、K-means等算法。这些算法都是为未来你研究其他更深奥的机器学习算法做准备,比如神经网络。你可以仔细阅读《统计学习方法》这本书,它讲解的概念都很基础,也没有过多的数学公式,这对于新人理解来说,有很大的帮助。
去学习吴恩达老师的机器学习视频,通过视频进一步了解机器学习算法说实话,只从书上看一些机器算法还不够,仅仅是对一些机器学习算法基础概念了解。你在看书的时候,肯定有一些不懂的地方。看完书籍之后,我推荐你去看吴恩达老师的机器学习课程,在网易公开课上面就可以查到。
我个人之前学机器学习算法的时候,看了一些。个人感觉吴恩达老师讲解的非常详细,同时会结合具体的实例来讲解。当时他在课上演示了使用机器学习算法来进行无人驾驶的实验,当时我就觉得原来机器学习算法这么厉害,还可以这样。你在听课的同时,希望你能够仔细的记录机器学习笔记,有些地方需要你下课之后,再继续查阅资料学习。
之后从机器学习项目入手,可以尝试机器学习算法类比赛学习了机器学习算法,可以开始通过具体项目实战来加强自己在机器学习方面的经验,对于大学生来说,参加机器学习算法类比赛是一种锻炼机器学习项目很好的方式,现在很多互联网大厂也比较看重你的比赛经历。
比较被认可的机器学习算法类比赛有,天池大数据竞赛、DataCasle、Kaggle这三种。天池大数据竞赛是阿里巴巴进行主办,主要结合阿里的一些场景和数据,来吸引更多同学加入,如果你能够在天池大数据竞赛拿到奖,阿里对于这个奖还是非常认可的。当然,DataCasle和Kaggle的比赛经历也不错,对于新人,项目经验对于你来说,会更加重要。
总结新人进入人工智能领域,可以先从看书入门,在对机器学习算法有了一定的基础了解之后,可以去看相关的机器学习视频,跟着视频教程一起实践,更深一步的加深自己的理解。最后,可以去参加一些机器学习算法类比赛,增加自己的项目经验。
我是Lake,专注大数据技术原理、人工智能、程序员经验分享,我会持续分享在大数据和人工智能方面的内容,希望你能点赞转发或者关注我,和你一起进步。
如果你有任何问题,也欢迎关注私信我,我会在第一时间进行解答。
初学者应该如何从零开始学习人工智能
此文是想要进入人工智能这个领域、但不知道从哪里开始的初学者最佳的学习资源列表。机器学习
有关机器学习领域的最佳介绍,请观看Coursera的AndrewNg机器学习课程。它解释了基本概念,并让你很好地理解最重要的算法。
有关ML算法的简要概述,查看这个TutsPlus课程“MachineLearningDistilled”。
“ProgrammingCollectiveIntelligence”这本书是一个很好的资源,可以学习ML算法在Python中的实际实现。它需要你通过许多实践项目,涵盖所有必要的基础。
这些不错的资源你可能也感兴趣:
PererNorvig的UdacityCourseonML(MLUdacity课程)
TomMitchell在卡梅隆大学教授的AnothercourseonML(另一门ML课程)
YouTube上的机器学习教程mathematicalmonk
深度学习关于深度学习的最佳介绍,我遇到最好的是DeepLearningWithPython。它不会深入到困难的数学,也没有一个超长列表的先决条件,而是描述了一个简单的方法开始DL,解释如何快速开始构建并学习实践上的一切。它解释了最先进的工具(Keras,TensorFlow),并带你通过几个实际项目,解释如何在所有最好的DL应用程序中实现最先进的结果。
在Google上也有一个greatintroductoryDLcourse,还有SephenWelch的greatexplanationofneuralnetworks。
之后,为了更深入地了解,这里还有一些有趣的资源:
GeoffreyHinton的coursera课程“NeuralNetworksforMachineLearning”。这门课程会带你了解ANN的经典问题——MNIST字符识别的过程,并将深入解释一切。
MITDeepLearning(深度学习)一书。
UFLDLtutorialbyStanford(斯坦福的UFLDL教程)
deeplearning.net教程
MichaelNielsen的NeuralNetworksandDeepLearning(神经网络和深度学习)一书
SimonO.Haykin的NeuralNetworksandLearningMachines(神经网络和机器学习)一书
人工智能“ArtificialIntelligence:AModernApproach(AIMA)”(人工智能:现代方法)是关于“守旧派”AI最好的一本书籍。这本书总体概述了人工智能领域,并解释了你需要了解的所有基本概念。
来自加州大学伯克利分校的ArtificialIntelligencecourse(人工智能课程)是一系列优秀的视频讲座,通过一种非常有趣的实践项目(训练AI玩Pacman游戏)来解释基本知识。我推荐在视频的同时可以一起阅读AIMA,因为它是基于这本书,并从不同的角度解释了很多类似的概念,使他们更容易理解。它的讲解相对较深,对初学者来说是非常不错的资源。
大脑如何工作
如果你对人工智能感兴趣,你可能很想知道人的大脑是怎么工作的,下面的几本书会通过直观有趣的方式来解释最好的现代理论。
JeffHawkins的OnIntelligence(有声读物)
G?del,Escher,Bach
我建议通过这两本书入门,它们能很好地向你解释大脑工作的一般理论。
其他资源:
RayKurzweil的HowtoCreateaMind(如何创建一个头脑RayKurzweil)(有声读物)。
PrinciplesofNeuralScience(神经科学原理)是我能找到的最好的书,深入NS。它谈论的是核心科学,神经解剖等。非常有趣,但也很长–我还在读它。数学以下是你开始学习AI需要了解的非常基本的数学概念:
微积分学
KhanAcademyCalculusvideos(可汗学院微积分视频)
MITlecturesonMultivariableCalculus(MIT关于多变量微积分的讲座)
线性代数
KhanAcademyLinearAlgebravideos(可汗学院线性代数视频)
MITlinearalgebravideosbyGilbertStrang(GilbertStrang的MIT线性代数视频)
CodingtheMatrix?(编码矩阵)–布朗大学线程代数CS课程
概率和统计
可汗学院Probability(概率)与Statistics(统计)视频
edxprobabilitycourse(edx概率课程)
计算机科学要掌握AI,你要熟悉计算机科学和编程。
如果你刚刚开始,我建议阅读DiveIntoPython3(深入Python3)这本书,你在Python编程中所需要的大部分知识都会提到。
要更深入地了解计算机编程的本质–看这个经典的MITcourse(MIT课程)。这是一门关于lisp和计算机科学的基础的课程,基于CS-结构和计算机程序的解释中最有影响力的书之一。
其他资源Metacademy?–是你知识的“包管理器”。你可以使用这个伟大的工具来了解你需要学习不同的ML主题的所有先决条件。
kaggle?–机器学习平台
以上就是我的观点,对于这个问题大家是怎么看待的呢?欢迎在下方评论区交流~我是科技领域创作者,十年互联网从业经验,欢迎关注我了解更多科技知识! 推荐阅读美国担心人工智能领域(美国人工智能出问题)
创业人工智能领域,创业人工智能领域包括
mit 人工智能领域(mit首次提出人工智能)
小米人工智能领域加盟,小米人工智能家居加盟
人工智能领域工程 人工智能领域工程有哪些
医疗人工智能领域 医疗人工智能领域包括
医疗领域人工智能融资(医疗领域人工智能融资现状)
人工智能领域规范,人工智能领域规范文件