今天给各位分享更加的人工智能的知识,其中也会对更加的人工智能是什么进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录
人工智能未来的发展趋势有哪些?
当前,AI技术在未来的发展众说纷纭,小编带大家看看信通院专家对AI发展趋势的展望。
AI技术一个好汉三个帮如果说新算法、新数据和新硬件是AI的三大支柱,那么背后还有3种力量也是居功至伟。
1云计算
经过10年的发展,云计算已经走过了概念验证(POC)的阶段,进入了规模落地的时期,正在发展成为新时期的关键信息基础设施。云计算就像20多年前TCP/IP那样,正在改变这个世界。
云计算不仅直接推动了大数据的兴起,也正在让AIasaService成为现实。业界大佬纷纷推出了“GPU/FPGA/算法/数据asaService”,方便用户做深度学习,通过云端直接租用就可以了。
2开源框架
如果说20多年前,以Linux为代表的开源,主要是在模仿商业软件的做法。那么今天,开源已经能够引领技术发展的潮流了。10年来,不仅是软件定义世界,更是开源软件定义世界。
2016年前后,AI巨头们纷纷开源了深度学习框架。比如Facebook的Torch和Caffe、谷歌的Tensorflow、亚马逊的MXnet、微软的CNTK、IBM的SystemML等。10年前,Google开源了Android操作系统,成功打造了智能手机的Android生态。现在,Google等纷纷开源AI框架,希望往日的辉煌重现。
3摩尔定律
50多年来,摩尔定律一直支配着半导体行业的发展,并且已经扩展到了存储、功耗、带宽和像素等。摩尔定律说,同样成本每隔18个月晶体管数量会翻倍,反过来同样数量晶体管成本会减半。
过去的30多年里,以CPU为代表的微处理器的计算能力提升了100多万倍。当今世界约有30多亿人使用的智能手机,每部的性能都超过1980年占据整个房间的超级计算机。
摩尔定律是CPU、GPU和TPU等快速发展的基础。虽然Google号称TPU把摩尔定律加速了7年,但摩尔定律仍然支配着CPU、GPU和TPU的性能曲线。
技术局限性深度学习的效果取决于网络结构的设计、训练数据的质量和训练方法的合理性。无论是从统计学还是对智能的基本认知的角度看,这次以深度学习牵引的AI产业化浪潮,还处于发展初期的阶段,存在不少瓶颈。
首先是在算法方面。一是深度学习还是黑盒子,缺乏理论指导,对神经网络内部涌现出的所谓“智能”还不能做出合理解释。二是事先无法预知学习的效果。为了提高训练的效果,除了不断增加网络深度和节点数量、喂更多数据和增加算力,然后反复调整参数基本就没别的招数了。三是调整参数还是在碰运气。还没有总结出一套系统经验做指导,完全依赖个人经验,甚至靠运气。四是通用性仍有待提高,没有记忆能力。目前几乎所有的机器学习系统都是被训练于执行单一任务,无之前任务的记忆。
其次是在计算方面。目前的机器学习基本还是蛮力计算,是吞噬“算力”的巨兽。一是在线实时训练几乎不可能,还只能离线进行。二是虽然GPU等并行式计算硬件取得了巨大进步,但算力仍然是性能的限制性瓶颈。三是能够大幅提高算力的硅芯片已逼近物理和经济成本上的极限,摩尔定律即将失效,计算性能的增长曲线变得不可预测。
第三是在数据方面。一是数据的透明度。虽然深度学习方法是公开透明的,但训练用的数据集往往是不透明的,在利益方的诱导下容易出现“数据改变信仰”的情况。二是数据攻击。输入数据的细微抖动就可能导致算法的失效,如果发起对抗性样本攻击,系统就直接被“洗脑”了。三是监督学习。深度学习需要的海量大数据,需要打上标签做监督学习,而对实时、海量的大数据打上标签几乎不可能。
第四是无法与其他学派结合。目前AI取得的进步属于连接学派,缺乏常识,因此在对智能的认知方面,缺乏分析因果关系的逻辑推理能力等。比如,还无法理解实体的概念,无法识别关键影响因素,不会直接学习知识,不善于解决复杂的数学运算,缺乏伦理道德等方面的常识等。
有智能无意识现在,业界只知道深度学习在图像处理和语音识别等方面表现出色,未来在其他领域也可能有潜在的应用价值,但它究竟做不了什么,如何与符号主义的逻辑推理等结合起来仍然不清楚。深度学习还需要更安全、更透明和更可解释。
前文这波AI热潮是由机器学习引发的。到2017年,机器学习的神经网络已具有数千到数百万个神经元和数百万个的连接。这样的复杂度还只相当于一个蠕虫的大脑,与有1000亿神经元和10000亿连接的人类大脑,差了N个数量级。但尽管如此,神经网络下围棋的能力已远高于一只蠕虫。与此同时,一只蠕虫所具有的自繁衍、捕食和躲避天敌等智能,无论是人类智能还是人工智能,都望尘莫及。
现在的AI是建立在“认知即计算”的理论之上的,实现时必须依靠计算机、服务器和GPU等各种“图灵机”。但基于图灵可计算理论,“卢卡斯论证”和彭罗斯“皇帝新脑”等早已论证或分析了,人的意识是非算法的,计算机无法建立起“自我”的概念。换言之,基于图灵机的AI在理论上是无法觉醒的,或者说,能够觉醒的AI不会基于这一代的计算机技术和理论。
AI让智能和意识分离,AI的智能完全有可能会超越人类,虽然它一直是无意识的。“AI已经在几乎所有需要思考的领域超越了人类,但是在那些人类和其他动物不需要思考就能完成的事情上,还差得很远”。计算机专家DonaldKnuth对AI现状的评价,也将会是相当长时间内的未来。
人工智能在现实生活中有哪些有趣的应用?
一些朋友已经在答案里,介绍了很多应用AI技术的产品,和AI技术的场景了。我也来说一个有趣的:用AI来对抗AI,用人工智能来对抗人工智能。
看过金庸小说的朋友们都知道,里面有一门叫“小无相功”的内功,威力强大。要身具此功,再知道其他武功的招式,倚仗其威力无比,可以模仿别人的绝学甚至胜于原版。
其实,这门武功在AI界,已经非常常见。AI倚仗其算力强大无比,只要给它足够的数据进行学习。学会以后,这类招式再精妙复杂,也难不倒它了。
举个栗子。
所有人都熟悉的验证码技术。
就是我们几乎每天都会用到,登录账号时都会出现的界面,就像下面这个:
验证码技术出现最初的目的,是为了保障账号是由人操作而非机器。发展到现在,已经非常复杂,许多验证码甚至连用户自己都很难分辨。
但是近几年,人工智能的技术不断发展,也被不法分子用于破解验证码来非法牟利,
不法分子通过各种手段收集大量的验证码图像后。用机器学习技术进行OCR(光学字符识别)模型的训练,从而实现对验证码的自动识别,正确率可达80%以上!业界通常称之为‘打码平台”。
一旦AI可以攻破验证码,不发分子就可以通过这种方式来盗取用户账号、恶意注册薅羊毛等,进行一系列犯罪行为。
去年6月,阿里安全就协助浙江警方侦破的全国首例“撞库打码”案。这些不法行为也导致直播、短视频以及各类线上营销活动被严重“薅羊毛”。平台和用户利益均受到侵害,且存在信息泄漏等问题。
可以说,这种对AI的恶意使用,已经影响了我们的生活。为了有效防范,去年5月,阿里安全与浙江大学联合成立AZFT网络空间安全实验室,共同研发人工智能安全技术。
我们找到的办法,就是用AI来对抗AI,用人工智能来对抗人工智能,也可以理解为用“小无相功”对付“小无相功”。
由于机器和人类的认知方式存在本质不同。AI破解验证码,并非像人一样,依靠的是经验、判断甚至想象。而是通过AI独有的方式,只要新一代AI验证码,能够学会AI破解的招式,见招拆招,有针对性的加入干扰,这样,破解AI的“套路”就无计可施了。
大体是这个样子:
其特点是,应用人工智能研究领域最新的对抗样本技术,对原始图像有针对性的加入干扰。使得人眼识别不受影响,但会显著降低人工智能模型的识别率,从而防范打码平台的破解,同时保持用户体验。
在现实生活中,AI(人工智能)已经有了许多非常有趣的应用了。在我们的日常生活中,正义的AI一直在和邪恶的AI交手,在数字世界里,保护我们的安全。
但是,不必恐慌,目前的所有AI,都是人类创作出来的。用马老师的话说就是:
我们应该真正担心的不是机器智能,会超越人类的智慧,而是人类本身的智慧会停止增长。加油,我们可以让明天变得更好。
AI人工智能会为人类带来什么,发展到极致会怎样?
人工智能是把双刃剑,既能给人类带来好处也有不少副作用;
一、好的方面;能给我们人类带来便利,一些工作都是由人工智能来完成的话,会给我们带来很大的帮助,而且一些事情由人工智能来做,也会省去我们很多的时间和力气,人工智能的应用还会大幅提高工人的生产效率,由此带来工人工资的提升。另外,亚马逊公司首席执行官杰弗里·贝索斯认为,人工智能还能让工人对工作的参与度有所提升,从而增强工人的责任感和愉悦感。可见,如果真的能把人工智能研发的非常好,未来的人工智能会让我们人类的工作将会变得十分的简单和轻便,我们的未来也会变得更加的美好。
二、副作用或影响;人工智能中的黑客技术等会给地缘政治和国家安全带来一定的不稳定因素,这一点对西方国家提出了挑战。此外,人工智能的出现不仅会改变制造产业,也会给高端服务产业带来变革,一些原本需要特殊专业知识和技能的职位或许会被人工智能机器所取代。这样的改变可能会对国家或人类的政治、文化、生活等层面产生难以估量的影响。
在现实生活中哪些属于人工智能?
现实生活中人工智能有扫地机器人,洗碗机,人工智能教育等等,如今随着技术的发展,科学的推进人工智能未来会改变我们的生活,使我们生活离不开各种高科技产品,总体来说人工智能的到来将促进人类的进步,同时也給我们带来了方便。
关于更加的人工智能,更加的人工智能是什么的介绍到此结束,希望对大家有所帮助。
推荐阅读白云先生 人工智能,白云先生 人工智能招聘
p人工智能 gtp人工智能
阿里云人工智能?阿里云人工智能平台
安卓 人工智能 游戏(安卓 人工智能 游戏手机)
sony人工智能(索尼 人工智能)
安康人工智能招生 安康人工智能招生简章
安徽人工智能 安徽人工智能企业
poc人工智能?人工智能pca